Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804024570> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2804024570 abstract "Many deep learning architectures for semantic segmentation involve a Fully Convolutional Neural Network (FCN) followed by a Conditional Random Field (CRF) to carry out inference over an image. These models typically involve unary potentials based on local appearance features computed by FCNs, and binary potentials based on the displacement between pixels. We show that while current methods succeed in segmenting whole objects, they perform poorly in situations involving a large number of object parts. We therefore suggest incorporating into the inference algorithm additional higher-order potentials inspired by the way humans identify and localize parts. We incorporate two relations that were shown to be useful to human object identification - containment and attachment - into the energy term of the CRF and evaluate their performance on the Pascal VOC Parts dataset. Our experimental results show that the segmentation of fine parts is positively affected by the addition of these two relations, and that the segmentation of fine parts can be further influenced by complex structural features." @default.
- W2804024570 created "2018-06-01" @default.
- W2804024570 creator A5002527110 @default.
- W2804024570 creator A5004404233 @default.
- W2804024570 creator A5043284462 @default.
- W2804024570 date "2018-05-24" @default.
- W2804024570 modified "2023-09-27" @default.
- W2804024570 title "Complex Relations in a Deep Structured Prediction Model for Fine Image Segmentation." @default.
- W2804024570 cites W1901129140 @default.
- W2804024570 cites W1903029394 @default.
- W2804024570 cites W2037227137 @default.
- W2804024570 cites W2104408738 @default.
- W2804024570 cites W2124592697 @default.
- W2804024570 cites W2128680590 @default.
- W2804024570 cites W2153410696 @default.
- W2804024570 cites W2161236525 @default.
- W2804024570 cites W2194775991 @default.
- W2804024570 cites W2395611524 @default.
- W2804024570 cites W2412782625 @default.
- W2804024570 cites W2563705555 @default.
- W2804024570 cites W2963563573 @default.
- W2804024570 cites W2963753570 @default.
- W2804024570 cites W2963881378 @default.
- W2804024570 cites W2963948108 @default.
- W2804024570 hasPublicationYear "2018" @default.
- W2804024570 type Work @default.
- W2804024570 sameAs 2804024570 @default.
- W2804024570 citedByCount "0" @default.
- W2804024570 crossrefType "posted-content" @default.
- W2804024570 hasAuthorship W2804024570A5002527110 @default.
- W2804024570 hasAuthorship W2804024570A5004404233 @default.
- W2804024570 hasAuthorship W2804024570A5043284462 @default.
- W2804024570 hasConcept C114614502 @default.
- W2804024570 hasConcept C124504099 @default.
- W2804024570 hasConcept C152565575 @default.
- W2804024570 hasConcept C153180895 @default.
- W2804024570 hasConcept C154945302 @default.
- W2804024570 hasConcept C160633673 @default.
- W2804024570 hasConcept C199360897 @default.
- W2804024570 hasConcept C22367795 @default.
- W2804024570 hasConcept C2776214188 @default.
- W2804024570 hasConcept C2781238097 @default.
- W2804024570 hasConcept C31972630 @default.
- W2804024570 hasConcept C33923547 @default.
- W2804024570 hasConcept C41008148 @default.
- W2804024570 hasConcept C50644808 @default.
- W2804024570 hasConcept C75608658 @default.
- W2804024570 hasConcept C78023250 @default.
- W2804024570 hasConcept C81363708 @default.
- W2804024570 hasConcept C89600930 @default.
- W2804024570 hasConceptScore W2804024570C114614502 @default.
- W2804024570 hasConceptScore W2804024570C124504099 @default.
- W2804024570 hasConceptScore W2804024570C152565575 @default.
- W2804024570 hasConceptScore W2804024570C153180895 @default.
- W2804024570 hasConceptScore W2804024570C154945302 @default.
- W2804024570 hasConceptScore W2804024570C160633673 @default.
- W2804024570 hasConceptScore W2804024570C199360897 @default.
- W2804024570 hasConceptScore W2804024570C22367795 @default.
- W2804024570 hasConceptScore W2804024570C2776214188 @default.
- W2804024570 hasConceptScore W2804024570C2781238097 @default.
- W2804024570 hasConceptScore W2804024570C31972630 @default.
- W2804024570 hasConceptScore W2804024570C33923547 @default.
- W2804024570 hasConceptScore W2804024570C41008148 @default.
- W2804024570 hasConceptScore W2804024570C50644808 @default.
- W2804024570 hasConceptScore W2804024570C75608658 @default.
- W2804024570 hasConceptScore W2804024570C78023250 @default.
- W2804024570 hasConceptScore W2804024570C81363708 @default.
- W2804024570 hasConceptScore W2804024570C89600930 @default.
- W2804024570 hasLocation W28040245701 @default.
- W2804024570 hasOpenAccess W2804024570 @default.
- W2804024570 hasPrimaryLocation W28040245701 @default.
- W2804024570 hasRelatedWork W1020007573 @default.
- W2804024570 hasRelatedWork W1203757169 @default.
- W2804024570 hasRelatedWork W1552929085 @default.
- W2804024570 hasRelatedWork W166619992 @default.
- W2804024570 hasRelatedWork W2134177620 @default.
- W2804024570 hasRelatedWork W2155394491 @default.
- W2804024570 hasRelatedWork W2211130039 @default.
- W2804024570 hasRelatedWork W2557984523 @default.
- W2804024570 hasRelatedWork W2594785533 @default.
- W2804024570 hasRelatedWork W2803879420 @default.
- W2804024570 hasRelatedWork W2900051638 @default.
- W2804024570 hasRelatedWork W2920980387 @default.
- W2804024570 hasRelatedWork W2947592434 @default.
- W2804024570 hasRelatedWork W2948080074 @default.
- W2804024570 hasRelatedWork W3014438652 @default.
- W2804024570 hasRelatedWork W3091465021 @default.
- W2804024570 hasRelatedWork W3165201101 @default.
- W2804024570 hasRelatedWork W3193729343 @default.
- W2804024570 hasRelatedWork W321985174 @default.
- W2804024570 hasRelatedWork W2171160689 @default.
- W2804024570 isParatext "false" @default.
- W2804024570 isRetracted "false" @default.
- W2804024570 magId "2804024570" @default.
- W2804024570 workType "article" @default.