Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804065741> ?p ?o ?g. }
- W2804065741 abstract "Abstract 1. The animal model is a key tool in quantitative genetics and has been used extensively to estimate fundamental parameters, such as additive genetic variance, heritability, or inbreeding effects. An implicit assumption of animal models is that all founder individuals derive from a single population. This assumption is commonly violated, for instance in cross-bred livestock breeds, when an observed population receive immigrants, or when a meta-population is split into genetically differentiated subpopulations. Ignoring genetic differences among different source populations of founders may lead to biased parameter estimates, in particular for the additive genetic variance. 2. To avoid such biases, genetic group models, extensions to the animal model that account for the presence of more than one genetic group, have been proposed. As a key limitation, the method to date only allows that the breeding values differ in their means, but not in their variances among the groups. Methodology previously proposed to account for group-specific variances included terms for segregation variance, which rendered the models infeasibly complex for application to most real study systems. 3. Here we explain why segregation variances are often negligible when analyzing the complex polygenic traits that are frequently the focus of evolutionary ecologists and animal breeders. Based on this we suggest an extension of the animal model that permits estimation of group-specific additive genetic variances. This is achieved by employing group-specific relatedness matrices for the breeding value components attributable to different genetic groups. We derive these matrices by decomposing the full relatedness matrix via the generalized Cholesky decomposition, and by scaling the respective matrix components for each group. To this end, we propose a computationally convenient approximation for the matrix component that encodes for the Mendelian sampling variance. Although convenient, this approximation is not critical. 4. Simulations and an example from an insular meta-population of house sparrows in Norway with three genetic groups illustrate that the method is successful in estimating group-specific additive genetic variances and that segregation variances are indeed negligible in the empirical example. 5. Quantifying differences in additive genetic variance within and among populations is of major biological interest in ecology, evolution, and animal and plant breeding. The proposed method allows to estimate such differences for subpopulations that form a connected meta-population, which may also be useful to study temporal or spatial variation of additive genetic variance." @default.
- W2804065741 created "2018-06-01" @default.
- W2804065741 creator A5024797598 @default.
- W2804065741 creator A5025165097 @default.
- W2804065741 creator A5073324355 @default.
- W2804065741 creator A5083497169 @default.
- W2804065741 creator A5088506585 @default.
- W2804065741 date "2018-05-25" @default.
- W2804065741 modified "2023-09-25" @default.
- W2804065741 title "Animal models with group-specific additive genetic variances: extending genetic group models" @default.
- W2804065741 cites W1487139063 @default.
- W2804065741 cites W1519581284 @default.
- W2804065741 cites W1808093461 @default.
- W2804065741 cites W1891728252 @default.
- W2804065741 cites W1916267539 @default.
- W2804065741 cites W1935543448 @default.
- W2804065741 cites W1965190303 @default.
- W2804065741 cites W1967919799 @default.
- W2804065741 cites W1969847116 @default.
- W2804065741 cites W1978261162 @default.
- W2804065741 cites W1981655478 @default.
- W2804065741 cites W1984046516 @default.
- W2804065741 cites W1989767017 @default.
- W2804065741 cites W1998387647 @default.
- W2804065741 cites W2000768217 @default.
- W2804065741 cites W2006317895 @default.
- W2804065741 cites W2014858352 @default.
- W2804065741 cites W2020495829 @default.
- W2804065741 cites W2021485197 @default.
- W2804065741 cites W2031781568 @default.
- W2804065741 cites W2033151532 @default.
- W2804065741 cites W2037002114 @default.
- W2804065741 cites W2038279432 @default.
- W2804065741 cites W2057765075 @default.
- W2804065741 cites W2062672606 @default.
- W2804065741 cites W2072454413 @default.
- W2804065741 cites W2073035337 @default.
- W2804065741 cites W2076856574 @default.
- W2804065741 cites W2077763475 @default.
- W2804065741 cites W2080235308 @default.
- W2804065741 cites W2090399165 @default.
- W2804065741 cites W2094387116 @default.
- W2804065741 cites W2100708904 @default.
- W2804065741 cites W2105052054 @default.
- W2804065741 cites W2105724599 @default.
- W2804065741 cites W2106547064 @default.
- W2804065741 cites W2109644969 @default.
- W2804065741 cites W2116100197 @default.
- W2804065741 cites W2116981144 @default.
- W2804065741 cites W2117851139 @default.
- W2804065741 cites W2132611968 @default.
- W2804065741 cites W2139852278 @default.
- W2804065741 cites W2143678009 @default.
- W2804065741 cites W2144898279 @default.
- W2804065741 cites W2152834979 @default.
- W2804065741 cites W2153882688 @default.
- W2804065741 cites W2165637305 @default.
- W2804065741 cites W2282565105 @default.
- W2804065741 cites W2303043072 @default.
- W2804065741 cites W2317819798 @default.
- W2804065741 cites W2530552113 @default.
- W2804065741 cites W2593463317 @default.
- W2804065741 cites W2611142540 @default.
- W2804065741 cites W2624992883 @default.
- W2804065741 cites W2735155748 @default.
- W2804065741 cites W2777508057 @default.
- W2804065741 cites W2788939605 @default.
- W2804065741 cites W2952795795 @default.
- W2804065741 cites W2953308517 @default.
- W2804065741 cites W350129386 @default.
- W2804065741 cites W4241494029 @default.
- W2804065741 cites W4254356072 @default.
- W2804065741 cites W4291746384 @default.
- W2804065741 doi "https://doi.org/10.1101/331157" @default.
- W2804065741 hasPublicationYear "2018" @default.
- W2804065741 type Work @default.
- W2804065741 sameAs 2804065741 @default.
- W2804065741 citedByCount "0" @default.
- W2804065741 crossrefType "posted-content" @default.
- W2804065741 hasAuthorship W2804065741A5024797598 @default.
- W2804065741 hasAuthorship W2804065741A5025165097 @default.
- W2804065741 hasAuthorship W2804065741A5073324355 @default.
- W2804065741 hasAuthorship W2804065741A5083497169 @default.
- W2804065741 hasAuthorship W2804065741A5088506585 @default.
- W2804065741 hasBestOaLocation W28040657411 @default.
- W2804065741 hasConcept C104201883 @default.
- W2804065741 hasConcept C104317684 @default.
- W2804065741 hasConcept C105795698 @default.
- W2804065741 hasConcept C121955636 @default.
- W2804065741 hasConcept C134018914 @default.
- W2804065741 hasConcept C144024400 @default.
- W2804065741 hasConcept C144133560 @default.
- W2804065741 hasConcept C149782125 @default.
- W2804065741 hasConcept C149923435 @default.
- W2804065741 hasConcept C161890455 @default.
- W2804065741 hasConcept C196083921 @default.
- W2804065741 hasConcept C203223496 @default.
- W2804065741 hasConcept C2777782036 @default.
- W2804065741 hasConcept C2778117688 @default.
- W2804065741 hasConcept C2908647359 @default.