Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804081808> ?p ?o ?g. }
- W2804081808 endingPage "053303" @default.
- W2804081808 startingPage "053303" @default.
- W2804081808 abstract "Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability density function of a subpart of a given complex system is a classical issue of statistical mechanics. Zwanzig projection perturbation approach to this issue leads to the trouble of resumming a series of commutators of differential operators that we show to correspond to solving the Lie evolution of first order differential operators along the unperturbed Liouvillian of the dynamical system of interest. In this paper, we develop in a systematic way the procedure to formally solve this problem. In particular, here we show which the basic assumptions are, concerning the dynamical system of interest, necessary for the Lie evolution to be a group on the space of first order differential operators, and we obtain the coefficients of the so-evolved operators. It is thus demonstrated that if the Liouvillian of the system of interest is not a first order differential operator, in general, the FPE structure breaks down and the master equation contains all the power of the partial derivatives, up to infinity. Therefore, this work shed some light on the trouble of the ubiquitous emergence of both thermodynamics from microscopic systems and regular regression laws at macroscopic scales. However these results are very general and can be applied also in other contexts that are non-Hamiltonian as, for example, geophysical fluid dynamics, where important events, like El Niño, can be considered as large time scale phenomena emerging from the observation of few ocean degrees of freedom of a more complex system, including the interaction with the atmosphere." @default.
- W2804081808 created "2018-06-01" @default.
- W2804081808 creator A5055622287 @default.
- W2804081808 date "2018-05-01" @default.
- W2804081808 modified "2023-09-27" @default.
- W2804081808 title "Using some results about the Lie evolution of differential operators to obtain the Fokker-Planck equation for non-Hamiltonian dynamical systems of interest" @default.
- W2804081808 cites W1426639305 @default.
- W2804081808 cites W1531713428 @default.
- W2804081808 cites W1860841258 @default.
- W2804081808 cites W1963966696 @default.
- W2804081808 cites W1975490251 @default.
- W2804081808 cites W1976845147 @default.
- W2804081808 cites W1983454288 @default.
- W2804081808 cites W1995318398 @default.
- W2804081808 cites W1996691737 @default.
- W2804081808 cites W1998052766 @default.
- W2804081808 cites W2005013070 @default.
- W2804081808 cites W2006226342 @default.
- W2804081808 cites W2013144802 @default.
- W2804081808 cites W2013803392 @default.
- W2804081808 cites W2019978376 @default.
- W2804081808 cites W2025900241 @default.
- W2804081808 cites W2030188506 @default.
- W2804081808 cites W2037736305 @default.
- W2804081808 cites W2041581279 @default.
- W2804081808 cites W2042892865 @default.
- W2804081808 cites W2050365822 @default.
- W2804081808 cites W2057881037 @default.
- W2804081808 cites W2057995699 @default.
- W2804081808 cites W2060353238 @default.
- W2804081808 cites W2063622835 @default.
- W2804081808 cites W2065661100 @default.
- W2804081808 cites W2068441371 @default.
- W2804081808 cites W2068843067 @default.
- W2804081808 cites W2069220782 @default.
- W2804081808 cites W2074239404 @default.
- W2804081808 cites W2078085046 @default.
- W2804081808 cites W2082685691 @default.
- W2804081808 cites W2083623028 @default.
- W2804081808 cites W2083796813 @default.
- W2804081808 cites W2084645272 @default.
- W2804081808 cites W2085266415 @default.
- W2804081808 cites W2088619116 @default.
- W2804081808 cites W2088822237 @default.
- W2804081808 cites W2096735216 @default.
- W2804081808 cites W2113512933 @default.
- W2804081808 cites W2133143269 @default.
- W2804081808 cites W2140602065 @default.
- W2804081808 cites W2141394518 @default.
- W2804081808 cites W2146662452 @default.
- W2804081808 cites W2146723241 @default.
- W2804081808 cites W2148271773 @default.
- W2804081808 cites W2151919804 @default.
- W2804081808 cites W2152290433 @default.
- W2804081808 cites W2152868046 @default.
- W2804081808 cites W2156236506 @default.
- W2804081808 cites W2156603435 @default.
- W2804081808 cites W2164193727 @default.
- W2804081808 cites W2164463320 @default.
- W2804081808 cites W2168922355 @default.
- W2804081808 cites W2175816372 @default.
- W2804081808 cites W2180311437 @default.
- W2804081808 cites W2270896521 @default.
- W2804081808 cites W2274036878 @default.
- W2804081808 cites W2328825019 @default.
- W2804081808 cites W2952110610 @default.
- W2804081808 cites W324815633 @default.
- W2804081808 cites W4245427449 @default.
- W2804081808 cites W4376591325 @default.
- W2804081808 doi "https://doi.org/10.1063/1.5037656" @default.
- W2804081808 hasPublicationYear "2018" @default.
- W2804081808 type Work @default.
- W2804081808 sameAs 2804081808 @default.
- W2804081808 citedByCount "5" @default.
- W2804081808 countsByYear W28040818082018 @default.
- W2804081808 countsByYear W28040818082020 @default.
- W2804081808 countsByYear W28040818082021 @default.
- W2804081808 countsByYear W28040818082022 @default.
- W2804081808 crossrefType "journal-article" @default.
- W2804081808 hasAuthorship W2804081808A5055622287 @default.
- W2804081808 hasBestOaLocation W28040818081 @default.
- W2804081808 hasConcept C104317684 @default.
- W2804081808 hasConcept C121332964 @default.
- W2804081808 hasConcept C121770821 @default.
- W2804081808 hasConcept C121864883 @default.
- W2804081808 hasConcept C126255220 @default.
- W2804081808 hasConcept C130787639 @default.
- W2804081808 hasConcept C134306372 @default.
- W2804081808 hasConcept C158448853 @default.
- W2804081808 hasConcept C17020691 @default.
- W2804081808 hasConcept C185592680 @default.
- W2804081808 hasConcept C33923547 @default.
- W2804081808 hasConcept C37914503 @default.
- W2804081808 hasConcept C51544822 @default.
- W2804081808 hasConcept C55493867 @default.
- W2804081808 hasConcept C62520636 @default.
- W2804081808 hasConcept C69123182 @default.
- W2804081808 hasConcept C70915906 @default.