Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804085881> ?p ?o ?g. }
- W2804085881 abstract "Abstract Three different algorithms, as implemented in three different computer programs, were put to the task of extracting direct space lattice parameters from four sets of synthetic images that were per design more or less periodic in two dimensions (2D). One of the test images in each set was per design free of noise and, therefore, genuinely 2D periodic so that it adhered perfectly to the constraints of a Bravais lattice type, Laue class, and plane symmetry group. Gaussian noise with a mean of zero and standard deviations of 10 and 50% of the maximal pixel intensity was added to the individual pixels of the noise-free images individually to create two more images and thereby complete the sets. The added noise broke the strict translation and site/point symmetries of the noise-free images of the four test sets so that all symmetries that existed per design turned into pseudo-symmetries of the second kind. Moreover, motif and translation-based pseudo-symmetries of the first kind, a.k.a. genuine pseudo-symmetries, and a metric specialization were present per design in the majority of the noise-free test images already. With the extraction of the lattice parameters from the images of the synthetic test sets, we assessed the robustness of the algorithms’ performances in the presence of both Gaussian noise and pre-designed pseudo-symmetries. By applying three different computer programs to the same image sets, we also tested the reliability of the programs with respect to subsequent geometric inferences such as Bravais lattice type assignments. Partly due to per design existing pseudo-symmetries of the first kind, the lattice parameters that the utilized computer programs extracted in their default settings disagreed for some of the test images even in the absence of noise, i.e., in the absence of pseudo-symmetries of the second kind, for any reasonable error estimates. For the noisy images, the disagreement of the lattice parameter extraction results from the algorithms was typically more pronounced. Non-default settings and re-interpretations/re-calculations on the basis of program outputs allowed for a reduction (but not a complete elimination) of the differences in the geometric feature extraction results of the three tested algorithms. Our lattice parameter extraction results are, thus, an illustration of Kenichi Kanatani’s dictum that no extraction algorithm for geometric features from images leads to definitive results because they are all aiming at an intrinsically impossible task in all real-world applications (Kanatani in Syst Comput Jpn 35:1–9, 2004). Since 2D-Bravais lattice type assignments are the natural end result of lattice parameter extractions from more or less 2D-periodic images, there is also a section in this paper that describes the intertwined metric relations/holohedral plane and point group symmetry hierarchy of the five translation symmetry types of the Euclidean plane. Because there is no definitive lattice parameter extraction algorithm, the outputs of computer programs that implemented such algorithms are also not definitive. Definitive assignments of higher symmetric Bravais lattice types to real-world images should, therefore, not be made on the basis of the numerical values of extracted lattice parameters and their error bars. Such assignments require (at the current state of affairs) arbitrarily set thresholds and are, therefore, always subjective so that they cannot claim objective definitiveness. This is the essence of Kenichi Kanatani’s comments on the vast majority of computerized attempts to extract symmetries and other hierarchical geometric features from noisy images (Kanatani in IEEE Trans Pattern Anal Mach Intell 19:246–247, 1997). All there should be instead for noisy and/or genuinely pseudo-symmetric images are rankings of the relative likelihoods of classifications into higher symmetric Bravais lattice types, Laue classes, and plane symmetry groups." @default.
- W2804085881 created "2018-06-01" @default.
- W2804085881 creator A5046872532 @default.
- W2804085881 creator A5083664020 @default.
- W2804085881 date "2018-03-28" @default.
- W2804085881 modified "2023-10-12" @default.
- W2804085881 title "Accurate lattice parameters from 2D-periodic images for subsequent Bravais lattice type assignments" @default.
- W2804085881 cites W1492399783 @default.
- W2804085881 cites W1521920233 @default.
- W2804085881 cites W1575198668 @default.
- W2804085881 cites W1835203915 @default.
- W2804085881 cites W2006037732 @default.
- W2804085881 cites W2010805642 @default.
- W2804085881 cites W2017133963 @default.
- W2804085881 cites W2029981682 @default.
- W2804085881 cites W2046613196 @default.
- W2804085881 cites W2058407305 @default.
- W2804085881 cites W2075487985 @default.
- W2804085881 cites W208384908 @default.
- W2804085881 cites W2096573847 @default.
- W2804085881 cites W2100428441 @default.
- W2804085881 cites W2132754100 @default.
- W2804085881 cites W2145910217 @default.
- W2804085881 cites W2147011169 @default.
- W2804085881 cites W2155173831 @default.
- W2804085881 cites W2161484530 @default.
- W2804085881 cites W2199346001 @default.
- W2804085881 cites W2217912240 @default.
- W2804085881 cites W2237784532 @default.
- W2804085881 cites W2255543244 @default.
- W2804085881 cites W2263465028 @default.
- W2804085881 cites W2340501099 @default.
- W2804085881 cites W2486933018 @default.
- W2804085881 cites W2507203144 @default.
- W2804085881 cites W2538148001 @default.
- W2804085881 cites W2588773912 @default.
- W2804085881 cites W2626195659 @default.
- W2804085881 cites W3119360659 @default.
- W2804085881 cites W3122885443 @default.
- W2804085881 cites W4296980399 @default.
- W2804085881 cites W648887538 @default.
- W2804085881 doi "https://doi.org/10.1186/s40679-018-0051-z" @default.
- W2804085881 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5871643" @default.
- W2804085881 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29607290" @default.
- W2804085881 hasPublicationYear "2018" @default.
- W2804085881 type Work @default.
- W2804085881 sameAs 2804085881 @default.
- W2804085881 citedByCount "15" @default.
- W2804085881 countsByYear W28040858812018 @default.
- W2804085881 countsByYear W28040858812019 @default.
- W2804085881 countsByYear W28040858812020 @default.
- W2804085881 countsByYear W28040858812021 @default.
- W2804085881 countsByYear W28040858812022 @default.
- W2804085881 countsByYear W28040858812023 @default.
- W2804085881 crossrefType "journal-article" @default.
- W2804085881 hasAuthorship W2804085881A5046872532 @default.
- W2804085881 hasAuthorship W2804085881A5083664020 @default.
- W2804085881 hasBestOaLocation W28040858811 @default.
- W2804085881 hasConcept C11413529 @default.
- W2804085881 hasConcept C115624301 @default.
- W2804085881 hasConcept C121332964 @default.
- W2804085881 hasConcept C154945302 @default.
- W2804085881 hasConcept C160633673 @default.
- W2804085881 hasConcept C185592680 @default.
- W2804085881 hasConcept C203833618 @default.
- W2804085881 hasConcept C24890656 @default.
- W2804085881 hasConcept C2524010 @default.
- W2804085881 hasConcept C2781204021 @default.
- W2804085881 hasConcept C33923547 @default.
- W2804085881 hasConcept C41008148 @default.
- W2804085881 hasConcept C4199805 @default.
- W2804085881 hasConcept C8010536 @default.
- W2804085881 hasConcept C96469262 @default.
- W2804085881 hasConceptScore W2804085881C11413529 @default.
- W2804085881 hasConceptScore W2804085881C115624301 @default.
- W2804085881 hasConceptScore W2804085881C121332964 @default.
- W2804085881 hasConceptScore W2804085881C154945302 @default.
- W2804085881 hasConceptScore W2804085881C160633673 @default.
- W2804085881 hasConceptScore W2804085881C185592680 @default.
- W2804085881 hasConceptScore W2804085881C203833618 @default.
- W2804085881 hasConceptScore W2804085881C24890656 @default.
- W2804085881 hasConceptScore W2804085881C2524010 @default.
- W2804085881 hasConceptScore W2804085881C2781204021 @default.
- W2804085881 hasConceptScore W2804085881C33923547 @default.
- W2804085881 hasConceptScore W2804085881C41008148 @default.
- W2804085881 hasConceptScore W2804085881C4199805 @default.
- W2804085881 hasConceptScore W2804085881C8010536 @default.
- W2804085881 hasConceptScore W2804085881C96469262 @default.
- W2804085881 hasFunder F4320309493 @default.
- W2804085881 hasIssue "1" @default.
- W2804085881 hasLocation W28040858811 @default.
- W2804085881 hasLocation W28040858812 @default.
- W2804085881 hasLocation W28040858813 @default.
- W2804085881 hasLocation W28040858814 @default.
- W2804085881 hasLocation W28040858815 @default.
- W2804085881 hasOpenAccess W2804085881 @default.
- W2804085881 hasPrimaryLocation W28040858811 @default.
- W2804085881 hasRelatedWork W2020324647 @default.
- W2804085881 hasRelatedWork W2041939361 @default.
- W2804085881 hasRelatedWork W2090093270 @default.