Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804097284> ?p ?o ?g. }
- W2804097284 endingPage "200" @default.
- W2804097284 startingPage "178" @default.
- W2804097284 abstract "To improve predictive accuracy, new hybrid models are proposed for container throughput forecasting based on wavelet transforms and data characteristic analysis (DCA) within a decomposition-ensemble methodology. Because of the complexity and nonlinearity of the time series of container throughputs at ports, the methodology decomposes the original time series into several components, which are rather simpler sub-sequences. Consequently, difficult forecasting tasks are simplified into a number of relatively easier subtasks. In this way, the proposed hybrid models can improve the accuracy of forecasting significantly. In the methodology, four main steps are involved: data decomposition, component reconstruction based on the DCA, individual prediction for each reconstructed component, and ensemble prediction as the final output. An empirical analysis was conducted for illustration and verification purposes by using time series of container throughputs at three main ports in Bohai Rim, China. The results suggest that the proposed hybrid models are able to forecast better than do other benchmark models. Forecasting may facilitate effective real-time decision making for strategic management and policy drafting. Predictions of container throughput can help port managers make tactical and operational decisions, such as operations planning in ports, the scheduling of port equipment, and route optimization." @default.
- W2804097284 created "2018-06-01" @default.
- W2804097284 creator A5056201546 @default.
- W2804097284 creator A5086259408 @default.
- W2804097284 creator A5088654583 @default.
- W2804097284 date "2018-05-23" @default.
- W2804097284 modified "2023-10-16" @default.
- W2804097284 title "Forecasting container throughput based on wavelet transforms within a decomposition-ensemble methodology: a case study of China" @default.
- W2804097284 cites W1596717185 @default.
- W2804097284 cites W1661370443 @default.
- W2804097284 cites W1899697322 @default.
- W2804097284 cites W1984500452 @default.
- W2804097284 cites W1985664682 @default.
- W2804097284 cites W1986478348 @default.
- W2804097284 cites W1993693968 @default.
- W2804097284 cites W2000765441 @default.
- W2804097284 cites W2006386100 @default.
- W2804097284 cites W2014683958 @default.
- W2804097284 cites W2016210396 @default.
- W2804097284 cites W2018263778 @default.
- W2804097284 cites W2018672055 @default.
- W2804097284 cites W2026436549 @default.
- W2804097284 cites W2031769266 @default.
- W2804097284 cites W2035480625 @default.
- W2804097284 cites W2040679537 @default.
- W2804097284 cites W2044280558 @default.
- W2804097284 cites W2053540503 @default.
- W2804097284 cites W2084497615 @default.
- W2804097284 cites W2085866051 @default.
- W2804097284 cites W2093311990 @default.
- W2804097284 cites W2106822551 @default.
- W2804097284 cites W2108959409 @default.
- W2804097284 cites W2122109421 @default.
- W2804097284 cites W2132984323 @default.
- W2804097284 cites W2137983211 @default.
- W2804097284 cites W2153421399 @default.
- W2804097284 cites W2156909104 @default.
- W2804097284 cites W2167036165 @default.
- W2804097284 cites W216983001 @default.
- W2804097284 cites W2261567389 @default.
- W2804097284 cites W2278589437 @default.
- W2804097284 cites W2280872997 @default.
- W2804097284 cites W2286508185 @default.
- W2804097284 cites W2344597853 @default.
- W2804097284 cites W2508864601 @default.
- W2804097284 cites W2570991997 @default.
- W2804097284 cites W2615901226 @default.
- W2804097284 cites W2619505338 @default.
- W2804097284 cites W2639113846 @default.
- W2804097284 cites W2747269180 @default.
- W2804097284 cites W2748306239 @default.
- W2804097284 cites W2751709683 @default.
- W2804097284 cites W2755364685 @default.
- W2804097284 cites W2758651552 @default.
- W2804097284 cites W2765246762 @default.
- W2804097284 cites W2767126816 @default.
- W2804097284 cites W2791252587 @default.
- W2804097284 cites W4292671038 @default.
- W2804097284 doi "https://doi.org/10.1080/03088839.2018.1476741" @default.
- W2804097284 hasPublicationYear "2018" @default.
- W2804097284 type Work @default.
- W2804097284 sameAs 2804097284 @default.
- W2804097284 citedByCount "13" @default.
- W2804097284 countsByYear W28040972842019 @default.
- W2804097284 countsByYear W28040972842020 @default.
- W2804097284 countsByYear W28040972842021 @default.
- W2804097284 countsByYear W28040972842022 @default.
- W2804097284 countsByYear W28040972842023 @default.
- W2804097284 crossrefType "journal-article" @default.
- W2804097284 hasAuthorship W2804097284A5056201546 @default.
- W2804097284 hasAuthorship W2804097284A5086259408 @default.
- W2804097284 hasAuthorship W2804097284A5088654583 @default.
- W2804097284 hasConcept C106131492 @default.
- W2804097284 hasConcept C119599485 @default.
- W2804097284 hasConcept C119857082 @default.
- W2804097284 hasConcept C121332964 @default.
- W2804097284 hasConcept C124101348 @default.
- W2804097284 hasConcept C124681953 @default.
- W2804097284 hasConcept C126255220 @default.
- W2804097284 hasConcept C127413603 @default.
- W2804097284 hasConcept C13280743 @default.
- W2804097284 hasConcept C143724316 @default.
- W2804097284 hasConcept C151406439 @default.
- W2804097284 hasConcept C151730666 @default.
- W2804097284 hasConcept C157764524 @default.
- W2804097284 hasConcept C168167062 @default.
- W2804097284 hasConcept C185798385 @default.
- W2804097284 hasConcept C18903297 @default.
- W2804097284 hasConcept C205649164 @default.
- W2804097284 hasConcept C206729178 @default.
- W2804097284 hasConcept C25570617 @default.
- W2804097284 hasConcept C2781018962 @default.
- W2804097284 hasConcept C31972630 @default.
- W2804097284 hasConcept C32802771 @default.
- W2804097284 hasConcept C33923547 @default.
- W2804097284 hasConcept C41008148 @default.
- W2804097284 hasConcept C42475967 @default.
- W2804097284 hasConcept C555944384 @default.