Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804114659> ?p ?o ?g. }
- W2804114659 abstract "The use of shotgun metagenomics to analyse low-complexity microbial communities in foods has the potential to be of considerable fundamental and applied value. However, there is currently no consensus with respect to choice of species classification tool, platform, or sequencing depth. Here, we benchmarked the performances of three high-throughput short-read sequencing platforms, the Illumina MiSeq, NextSeq 500, and Ion Proton, for shotgun metagenomics of food microbiota. Briefly, we sequenced six kefir DNA samples and a mock community DNA sample, the latter constructed by evenly mixing genomic DNA from 13 food-related bacterial species. A variety of bioinformatic tools were used to analyse the data generated, and the effects of sequencing depth on these analyses were tested by randomly subsampling reads.Compositional analysis results were consistent between the platforms at divergent sequencing depths. However, we observed pronounced differences in the predictions from species classification tools. Indeed, PERMANOVA indicated that there was no significant differences between the compositional results generated by the different sequencers (p = 0.693, R2 = 0.011), but there was a significant difference between the results predicted by the species classifiers (p = 0.01, R2 = 0.127). The relative abundances predicted by the classifiers, apart from MetaPhlAn2, were apparently biased by reference genome sizes. Additionally, we observed varying false-positive rates among the classifiers. MetaPhlAn2 had the lowest false-positive rate, whereas SLIMM had the greatest false-positive rate. Strain-level analysis results were also similar across platforms. Each platform correctly identified the strains present in the mock community, but accuracy was improved slightly with greater sequencing depth. Notably, PanPhlAn detected the dominant strains in each kefir sample above 500,000 reads per sample. Again, the outputs from functional profiling analysis using SUPER-FOCUS were generally accordant between the platforms at different sequencing depths. Finally, and expectedly, metagenome assembly completeness was significantly lower on the MiSeq than either on the NextSeq (p = 0.03) or the Proton (p = 0.011), and it improved with increased sequencing depth.Our results demonstrate a remarkable similarity in the results generated by the three sequencing platforms at different sequencing depths, and, in fact, the choice of bioinformatics methodology had a more evident impact on results than the choice of sequencer did." @default.
- W2804114659 created "2018-06-01" @default.
- W2804114659 creator A5024229944 @default.
- W2804114659 creator A5029426622 @default.
- W2804114659 creator A5045979403 @default.
- W2804114659 creator A5050465932 @default.
- W2804114659 creator A5061467408 @default.
- W2804114659 creator A5084615875 @default.
- W2804114659 date "2018-03-20" @default.
- W2804114659 modified "2023-10-16" @default.
- W2804114659 title "Species classifier choice is a key consideration when analysing low-complexity food microbiome data" @default.
- W2804114659 cites W1433995531 @default.
- W2804114659 cites W1577822803 @default.
- W2804114659 cites W1584790813 @default.
- W2804114659 cites W1703384511 @default.
- W2804114659 cites W1847253990 @default.
- W2804114659 cites W1979966476 @default.
- W2804114659 cites W1988929438 @default.
- W2804114659 cites W2003347102 @default.
- W2804114659 cites W2009906332 @default.
- W2804114659 cites W2012016911 @default.
- W2804114659 cites W2024775172 @default.
- W2804114659 cites W2031893281 @default.
- W2804114659 cites W2045204781 @default.
- W2804114659 cites W2047669659 @default.
- W2804114659 cites W2094116491 @default.
- W2804114659 cites W2102461176 @default.
- W2804114659 cites W2103901746 @default.
- W2804114659 cites W2107903949 @default.
- W2804114659 cites W2108234281 @default.
- W2804114659 cites W2113256118 @default.
- W2804114659 cites W2114034054 @default.
- W2804114659 cites W2115921802 @default.
- W2804114659 cites W2119284644 @default.
- W2804114659 cites W2120330409 @default.
- W2804114659 cites W2123016662 @default.
- W2804114659 cites W2124715997 @default.
- W2804114659 cites W2127303481 @default.
- W2804114659 cites W2128769815 @default.
- W2804114659 cites W2141637710 @default.
- W2804114659 cites W2141920662 @default.
- W2804114659 cites W2143420371 @default.
- W2804114659 cites W2157630710 @default.
- W2804114659 cites W2159954944 @default.
- W2804114659 cites W2170551349 @default.
- W2804114659 cites W2207819727 @default.
- W2804114659 cites W2243986007 @default.
- W2804114659 cites W2260059978 @default.
- W2804114659 cites W2275606382 @default.
- W2804114659 cites W2307206101 @default.
- W2804114659 cites W2313726856 @default.
- W2804114659 cites W2337747100 @default.
- W2804114659 cites W2341278028 @default.
- W2804114659 cites W2385413224 @default.
- W2804114659 cites W2405784650 @default.
- W2804114659 cites W2410979882 @default.
- W2804114659 cites W2438160246 @default.
- W2804114659 cites W2464743969 @default.
- W2804114659 cites W2467321643 @default.
- W2804114659 cites W2502616020 @default.
- W2804114659 cites W2509730012 @default.
- W2804114659 cites W2523445937 @default.
- W2804114659 cites W2525954034 @default.
- W2804114659 cites W2528922988 @default.
- W2804114659 cites W2529645514 @default.
- W2804114659 cites W2586360538 @default.
- W2804114659 cites W2587202392 @default.
- W2804114659 cites W2587393112 @default.
- W2804114659 cites W2599623918 @default.
- W2804114659 cites W2626401996 @default.
- W2804114659 cites W2738166853 @default.
- W2804114659 cites W2754579667 @default.
- W2804114659 cites W2951027231 @default.
- W2804114659 cites W2951176108 @default.
- W2804114659 cites W4242289937 @default.
- W2804114659 doi "https://doi.org/10.1186/s40168-018-0437-0" @default.
- W2804114659 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5859664" @default.
- W2804114659 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29554948" @default.
- W2804114659 hasPublicationYear "2018" @default.
- W2804114659 type Work @default.
- W2804114659 sameAs 2804114659 @default.
- W2804114659 citedByCount "55" @default.
- W2804114659 countsByYear W28041146592018 @default.
- W2804114659 countsByYear W28041146592019 @default.
- W2804114659 countsByYear W28041146592020 @default.
- W2804114659 countsByYear W28041146592021 @default.
- W2804114659 countsByYear W28041146592022 @default.
- W2804114659 countsByYear W28041146592023 @default.
- W2804114659 crossrefType "journal-article" @default.
- W2804114659 hasAuthorship W2804114659A5024229944 @default.
- W2804114659 hasAuthorship W2804114659A5029426622 @default.
- W2804114659 hasAuthorship W2804114659A5045979403 @default.
- W2804114659 hasAuthorship W2804114659A5050465932 @default.
- W2804114659 hasAuthorship W2804114659A5061467408 @default.
- W2804114659 hasAuthorship W2804114659A5084615875 @default.
- W2804114659 hasBestOaLocation W28041146591 @default.
- W2804114659 hasConcept C101985253 @default.
- W2804114659 hasConcept C104317684 @default.
- W2804114659 hasConcept C132917006 @default.
- W2804114659 hasConcept C141231307 @default.