Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804315875> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2804315875 endingPage "1304" @default.
- W2804315875 startingPage "1299" @default.
- W2804315875 abstract "No AccessEngineering NoteClimb, Cruise, and Descent Speed Reduction for Airborne Delay Without Extra FuelYan Xu, Ramon Dalmau and Xavier PratsYan XuTechnical University of Catalonia, 08860 Castelldefels, Spain*Ph.D. Candidate, Department of Physics—Aeronautics Division, Office C3-121, Esteve Terradas 5, Castelldefels, Catalonia, Barcelona; . Student Member AIAA.Search for more papers by this author, Ramon DalmauTechnical University of Catalonia, 08860 Castelldefels, Spain†Ph.D. Candidate, Department of Physics—Aeronautics Division, Office C3-121, Esteve Terradas 5, Castelldefels, Catalonia, Barcelona; .Search for more papers by this author and Xavier PratsTechnical University of Catalonia, 08860 Castelldefels, Spain‡Serra Hunter Fellow, Department of Physics—Aeronautics Division, Office C3-104, Esteve Terradas 5, Castelldefels, Catalonia, Barcelona; . Member AIAA.Search for more papers by this authorPublished Online:12 Apr 2018https://doi.org/10.2514/1.C034197SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Cook L. S. and Wood B., “A Model for Determining Ground Delay Program Parameters Using a Probabilistic Forecast of Stratus Clearing,” Air Traffic Control Quarterly, Vol. 18, No. 1, 2010, pp. 85–108. doi:https://doi.org/10.2514/atcq.18.1.85 ATCQER LinkGoogle Scholar[2] Delgado L., Prats X. and Sridhar B., “Cruise Speed Reduction for Ground Delay Programs: A Case Study for San Francisco International Airport Arrivals,” Transportation Research, Part C: Emerging Technologies, Vol. 36, Nov. 2013, pp. 83–96. doi:https://doi.org/10.1016/j.trc.2013.07.011 CrossrefGoogle Scholar[3] Ball M. O., Hoffman R. and Mukherjee A., “Ground Delay Program Planning Under Uncertainty Based on the Ration-by-Distance Principle,” Transportation Science, Vol. 44, No. 1, 2010, pp. 1–14. doi:https://doi.org/10.1287/trsc.1090.0289 TRSCBJ 0041-1655 CrossrefGoogle Scholar[4] Inniss T. R. and Ball M. O., “Estimating One-Parameter Airport Arrival Capacity Distributions for Air Traffic Flow Management,” Air Traffic Control Quarterly, Vol. 12, No. 3, 2004, pp. 223–251. doi:https://doi.org/10.2514/atcq.12.3.223 ATCQER LinkGoogle Scholar[5] Prats X. and Hansen M., “Green Delay Programs: Absorbing ATFM Delay by Flying at Minimum Fuel Speed,” Proceedings of the 9th USA/Europe Air Traffic Management R&D Seminar, FAA/Eurocontrol, Berlin, Germany, 2011, Paper 83. Google Scholar[6] Delgado L. and Prats X., “En Route Speed Reduction Concept for Absorbing Air Traffic Flow Management Delays,” Journal of Aircraft, Vol. 49, No. 1, 2012, pp. 214–224. doi:https://doi.org/10.2514/1.C031484 LinkGoogle Scholar[7] Delgado L. and Prats X., “Operating Cost Based Cruise Speed Reduction for Ground Delay Programs: Effect of Scope Length,” Transportation Research, Part C: Emerging Technologies, Vol. 48, Nov. 2014, pp. 437–452. doi:https://doi.org/10.1016/j.trc.2014.09.015 CrossrefGoogle Scholar[8] Delgado L. and Prats X., “Effect of Wind on Operating-Cost-Based Cruise Speed Reduction for Delay Absorption,” IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No. 2, 2013, pp. 918–927. doi:https://doi.org/10.1109/TITS.2013.2246864 CrossrefGoogle Scholar[9] Roberson B., “Fuel Conservation Strategies: Cost Index Explained,” AERO Magazine, Qtr. 2, 2007, pp. 26–28. Google Scholar[10] “Getting to Grips with the Cost Index, Issue II. Flight Operations Support and Line Assistance (STL),” Customer Services Directorate, Vol. 1, Airbus, Toulouse, France, 1998, pp. 20–51. Google Scholar[11] “Flight Crew Operation Manual (FCOM): A320,” Ver. 1.3.1, Vol. 1.22.30, Airbus, Toulouse, France, 1993, p. 11. Google Scholar[12] Xu Y., Dalmau R. and Prats X., “Effects of Speed Reduction in Climb, Cruise and Descent Phases to Generate Linear Holding at No Extra Fuel Cost,” Proceedings of the 7th International Conference on Research in Air Transportation (ICRAT), FAA/Eurocontrol, 2016, Paper 44. Google Scholar[13] Dalmau R. and Prats X., “Fuel and Time Savings by Flying Continuous Cruise Climbs: Estimating the Benefit Pools for Maximum Range Operations,” Transportation Research, Part D: Transport and Environment, Vol. 35, March 2015, pp. 62–71. doi:https://doi.org/10.1016/j.trd.2014.11.019 CrossrefGoogle Scholar[14] Betts J. T., Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Vol. 19, SIAM, Philadelphia, PA, 2010, pp. 123–216. doi:https://doi.org/10.1137/1.9780898718577 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byAnalysis of Achievable Airborne Delay and Compliance Rate by Speed Control: A Case Study of International Arrivals at Tokyo International AirportIEEE Access, Vol. 8 What's Popular Volume 55, Number 3May 2018 CrossmarkInformationCopyright © 2018 by Yan Xu, Ramon Dalmau, and Xavier Prats. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0021-8669 (print) or 1533-3868 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsAerospace ManufacturersAerospace SciencesAir Traffic ControlAir Traffic ManagementAircraft Dynamic ModesAirspeedAviationAvionicsFlight DynamicsFlight Management SystemFlight MechanicsGuidance, Navigation, and Control SystemsSociety and Aerospace Technology KeywordsCruise AltitudeFuel ConsumptionAir Traffic Flow ManagementIndicated AirspeedNumerical OptimizationTrajectory OptimizationFlight ProfileFlight PhasesATCFlight Management SystemPDF Received29 August 2016Accepted2 February 2018Published online12 April 2018" @default.
- W2804315875 created "2018-06-01" @default.
- W2804315875 creator A5003728401 @default.
- W2804315875 creator A5016201495 @default.
- W2804315875 creator A5079756809 @default.
- W2804315875 date "2018-05-01" @default.
- W2804315875 modified "2023-10-01" @default.
- W2804315875 title "Climb, Cruise, and Descent Speed Reduction for Airborne Delay Without Extra Fuel" @default.
- W2804315875 cites W1991631376 @default.
- W2804315875 cites W1997999018 @default.
- W2804315875 cites W2066575166 @default.
- W2804315875 cites W2093575125 @default.
- W2804315875 cites W2116100879 @default.
- W2804315875 cites W2501301382 @default.
- W2804315875 cites W40584723 @default.
- W2804315875 cites W609590890 @default.
- W2804315875 cites W625297528 @default.
- W2804315875 doi "https://doi.org/10.2514/1.c034197" @default.
- W2804315875 hasPublicationYear "2018" @default.
- W2804315875 type Work @default.
- W2804315875 sameAs 2804315875 @default.
- W2804315875 citedByCount "2" @default.
- W2804315875 countsByYear W28043158752020 @default.
- W2804315875 countsByYear W28043158752023 @default.
- W2804315875 crossrefType "journal-article" @default.
- W2804315875 hasAuthorship W2804315875A5003728401 @default.
- W2804315875 hasAuthorship W2804315875A5016201495 @default.
- W2804315875 hasAuthorship W2804315875A5079756809 @default.
- W2804315875 hasBestOaLocation W28043158752 @default.
- W2804315875 hasConcept C113168747 @default.
- W2804315875 hasConcept C127413603 @default.
- W2804315875 hasConcept C146978453 @default.
- W2804315875 hasConcept C153294291 @default.
- W2804315875 hasConcept C154945302 @default.
- W2804315875 hasConcept C178802073 @default.
- W2804315875 hasConcept C205649164 @default.
- W2804315875 hasConcept C2775924081 @default.
- W2804315875 hasConcept C2776637919 @default.
- W2804315875 hasConcept C2778168010 @default.
- W2804315875 hasConcept C2778821358 @default.
- W2804315875 hasConcept C39432304 @default.
- W2804315875 hasConcept C41008148 @default.
- W2804315875 hasConcept C42475967 @default.
- W2804315875 hasConceptScore W2804315875C113168747 @default.
- W2804315875 hasConceptScore W2804315875C127413603 @default.
- W2804315875 hasConceptScore W2804315875C146978453 @default.
- W2804315875 hasConceptScore W2804315875C153294291 @default.
- W2804315875 hasConceptScore W2804315875C154945302 @default.
- W2804315875 hasConceptScore W2804315875C178802073 @default.
- W2804315875 hasConceptScore W2804315875C205649164 @default.
- W2804315875 hasConceptScore W2804315875C2775924081 @default.
- W2804315875 hasConceptScore W2804315875C2776637919 @default.
- W2804315875 hasConceptScore W2804315875C2778168010 @default.
- W2804315875 hasConceptScore W2804315875C2778821358 @default.
- W2804315875 hasConceptScore W2804315875C39432304 @default.
- W2804315875 hasConceptScore W2804315875C41008148 @default.
- W2804315875 hasConceptScore W2804315875C42475967 @default.
- W2804315875 hasFunder F4320322725 @default.
- W2804315875 hasIssue "3" @default.
- W2804315875 hasLocation W28043158751 @default.
- W2804315875 hasLocation W28043158752 @default.
- W2804315875 hasOpenAccess W2804315875 @default.
- W2804315875 hasPrimaryLocation W28043158751 @default.
- W2804315875 hasRelatedWork W2000614156 @default.
- W2804315875 hasRelatedWork W2001831421 @default.
- W2804315875 hasRelatedWork W2287721205 @default.
- W2804315875 hasRelatedWork W2319861862 @default.
- W2804315875 hasRelatedWork W2584171965 @default.
- W2804315875 hasRelatedWork W2803364854 @default.
- W2804315875 hasRelatedWork W2899084033 @default.
- W2804315875 hasRelatedWork W2949515039 @default.
- W2804315875 hasRelatedWork W4283215992 @default.
- W2804315875 hasRelatedWork W809045127 @default.
- W2804315875 hasVolume "55" @default.
- W2804315875 isParatext "false" @default.
- W2804315875 isRetracted "false" @default.
- W2804315875 magId "2804315875" @default.
- W2804315875 workType "article" @default.