Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804333879> ?p ?o ?g. }
- W2804333879 endingPage "4072" @default.
- W2804333879 startingPage "4065" @default.
- W2804333879 abstract "Among semiconductor nanocrystals (NCs), 2D nanoplatelets (NPLs) are a special class of nanomaterials with well controlled optical features. So far, most of the efforts have been focused on wide band gap materials such as cadmium chalcogenide semiconductors. However, optical absorption can be pushed toward the infrared (IR) range using narrow band gap materials such as mercury chalcogenides. Here we demonstrate the feasibility of a core/shell structure made of a CdSe core with two HgSe external wells. We demonstrate that the optical spectrum of the heterostructure is set by the HgSe wells and this, despite the quasi type II band alignment, makes the band edge energy independent of the inner core thickness. On the other hand, these core/shell NPLs behave, from a transport point of view, as a wide band gap material. We demonstrate that the introduction of a wide band gap CdSe core makes the material less conductive and with a larger photoresponse. Hence, the heterostructure presents an effective electric band gap wider than the optical band gap. This strategy will be of utmost interest to design infrared effective colloidal materials for which the reduction of the carrier density and the associated dark current is a critical property." @default.
- W2804333879 created "2018-06-01" @default.
- W2804333879 creator A5013212224 @default.
- W2804333879 creator A5036081515 @default.
- W2804333879 creator A5036431763 @default.
- W2804333879 creator A5046584048 @default.
- W2804333879 creator A5062636164 @default.
- W2804333879 creator A5064635596 @default.
- W2804333879 creator A5067512025 @default.
- W2804333879 creator A5077976937 @default.
- W2804333879 creator A5079214462 @default.
- W2804333879 creator A5087165813 @default.
- W2804333879 date "2018-05-21" @default.
- W2804333879 modified "2023-10-18" @default.
- W2804333879 title "Coupled HgSe Colloidal Quantum Wells through a Tunable Barrier: A Strategy To Uncouple Optical and Transport Band Gap" @default.
- W2804333879 cites W1963538241 @default.
- W2804333879 cites W1978351395 @default.
- W2804333879 cites W1994860069 @default.
- W2804333879 cites W2001849633 @default.
- W2804333879 cites W2004475961 @default.
- W2804333879 cites W2018580873 @default.
- W2804333879 cites W2023317442 @default.
- W2804333879 cites W2025610019 @default.
- W2804333879 cites W2033636682 @default.
- W2804333879 cites W2033982667 @default.
- W2804333879 cites W2034842887 @default.
- W2804333879 cites W2038980827 @default.
- W2804333879 cites W2041352949 @default.
- W2804333879 cites W2043282500 @default.
- W2804333879 cites W2048324965 @default.
- W2804333879 cites W2056004372 @default.
- W2804333879 cites W2063227873 @default.
- W2804333879 cites W2064158921 @default.
- W2804333879 cites W2073930887 @default.
- W2804333879 cites W2076306657 @default.
- W2804333879 cites W2080803077 @default.
- W2804333879 cites W2090716448 @default.
- W2804333879 cites W2147108100 @default.
- W2804333879 cites W2236366199 @default.
- W2804333879 cites W2312864438 @default.
- W2804333879 cites W2317113064 @default.
- W2804333879 cites W2320396369 @default.
- W2804333879 cites W2327240231 @default.
- W2804333879 cites W2327925579 @default.
- W2804333879 cites W2331838483 @default.
- W2804333879 cites W2377102320 @default.
- W2804333879 cites W2399279899 @default.
- W2804333879 cites W2478135502 @default.
- W2804333879 cites W2491314438 @default.
- W2804333879 cites W2515428772 @default.
- W2804333879 cites W2518738852 @default.
- W2804333879 cites W2523361793 @default.
- W2804333879 cites W2594257140 @default.
- W2804333879 cites W2596665764 @default.
- W2804333879 cites W2604318329 @default.
- W2804333879 cites W2622466845 @default.
- W2804333879 cites W2623959329 @default.
- W2804333879 cites W2732374381 @default.
- W2804333879 cites W2754649725 @default.
- W2804333879 cites W2756105453 @default.
- W2804333879 cites W2762019160 @default.
- W2804333879 cites W2765388916 @default.
- W2804333879 cites W2768959128 @default.
- W2804333879 cites W2773254899 @default.
- W2804333879 cites W2784096405 @default.
- W2804333879 cites W4213168521 @default.
- W2804333879 cites W4232788538 @default.
- W2804333879 doi "https://doi.org/10.1021/acs.chemmater.8b01028" @default.
- W2804333879 hasPublicationYear "2018" @default.
- W2804333879 type Work @default.
- W2804333879 sameAs 2804333879 @default.
- W2804333879 citedByCount "30" @default.
- W2804333879 countsByYear W28043338792019 @default.
- W2804333879 countsByYear W28043338792020 @default.
- W2804333879 countsByYear W28043338792021 @default.
- W2804333879 countsByYear W28043338792022 @default.
- W2804333879 countsByYear W28043338792023 @default.
- W2804333879 crossrefType "journal-article" @default.
- W2804333879 hasAuthorship W2804333879A5013212224 @default.
- W2804333879 hasAuthorship W2804333879A5036081515 @default.
- W2804333879 hasAuthorship W2804333879A5036431763 @default.
- W2804333879 hasAuthorship W2804333879A5046584048 @default.
- W2804333879 hasAuthorship W2804333879A5062636164 @default.
- W2804333879 hasAuthorship W2804333879A5064635596 @default.
- W2804333879 hasAuthorship W2804333879A5067512025 @default.
- W2804333879 hasAuthorship W2804333879A5077976937 @default.
- W2804333879 hasAuthorship W2804333879A5079214462 @default.
- W2804333879 hasAuthorship W2804333879A5087165813 @default.
- W2804333879 hasBestOaLocation W28043338792 @default.
- W2804333879 hasConcept C108225325 @default.
- W2804333879 hasConcept C120665830 @default.
- W2804333879 hasConcept C121332964 @default.
- W2804333879 hasConcept C125469278 @default.
- W2804333879 hasConcept C138631740 @default.
- W2804333879 hasConcept C158355884 @default.
- W2804333879 hasConcept C171250308 @default.
- W2804333879 hasConcept C181966813 @default.
- W2804333879 hasConcept C192562407 @default.