Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804368052> ?p ?o ?g. }
- W2804368052 abstract "Large amounts of labeled data are typically required to train deep learning models. For many real-world problems, however, acquiring additional data can be expensive or even impossible. We present semi-supervised deep kernel learning (SSDKL), a semi-supervised regression model based on minimizing predictive variance in the posterior regularization framework. SSDKL combines the hierarchical representation learning of neural networks with the probabilistic modeling capabilities of Gaussian processes. By leveraging unlabeled data, we show improvements on a diverse set of real-world regression tasks over supervised deep kernel learning and semi-supervised methods such as VAT and mean teacher adapted for regression." @default.
- W2804368052 created "2018-06-01" @default.
- W2804368052 creator A5065068490 @default.
- W2804368052 creator A5069097726 @default.
- W2804368052 creator A5091179481 @default.
- W2804368052 date "2018-05-26" @default.
- W2804368052 modified "2023-09-27" @default.
- W2804368052 title "Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance" @default.
- W2804368052 cites W1595698486 @default.
- W2804368052 cites W1630959083 @default.
- W2804368052 cites W1702387805 @default.
- W2804368052 cites W1746819321 @default.
- W2804368052 cites W1990334093 @default.
- W2804368052 cites W2048679005 @default.
- W2804368052 cites W2099471712 @default.
- W2804368052 cites W2102419107 @default.
- W2804368052 cites W2114188922 @default.
- W2804368052 cites W2114718442 @default.
- W2804368052 cites W2145494108 @default.
- W2804368052 cites W2154368244 @default.
- W2804368052 cites W2271840356 @default.
- W2804368052 cites W2280377497 @default.
- W2804368052 cites W2513506629 @default.
- W2804368052 cites W2542136887 @default.
- W2804368052 cites W2549019841 @default.
- W2804368052 cites W2592691248 @default.
- W2804368052 cites W2604645045 @default.
- W2804368052 cites W2606711863 @default.
- W2804368052 cites W2809657535 @default.
- W2804368052 cites W2951004968 @default.
- W2804368052 cites W2962964508 @default.
- W2804368052 cites W2962970380 @default.
- W2804368052 cites W2963207607 @default.
- W2804368052 cites W2963324816 @default.
- W2804368052 cites W2963578416 @default.
- W2804368052 cites W2963641944 @default.
- W2804368052 cites W2963711523 @default.
- W2804368052 cites W2964040467 @default.
- W2804368052 cites W2964121744 @default.
- W2804368052 cites W2964135722 @default.
- W2804368052 cites W3102253155 @default.
- W2804368052 cites W3120740533 @default.
- W2804368052 cites W3122664795 @default.
- W2804368052 cites W57680428 @default.
- W2804368052 cites W830076066 @default.
- W2804368052 cites W92894758 @default.
- W2804368052 cites W2530816535 @default.
- W2804368052 hasPublicationYear "2018" @default.
- W2804368052 type Work @default.
- W2804368052 sameAs 2804368052 @default.
- W2804368052 citedByCount "1" @default.
- W2804368052 countsByYear W28043680522020 @default.
- W2804368052 crossrefType "posted-content" @default.
- W2804368052 hasAuthorship W2804368052A5065068490 @default.
- W2804368052 hasAuthorship W2804368052A5069097726 @default.
- W2804368052 hasAuthorship W2804368052A5091179481 @default.
- W2804368052 hasConcept C105795698 @default.
- W2804368052 hasConcept C108583219 @default.
- W2804368052 hasConcept C114614502 @default.
- W2804368052 hasConcept C119857082 @default.
- W2804368052 hasConcept C121332964 @default.
- W2804368052 hasConcept C136389625 @default.
- W2804368052 hasConcept C152877465 @default.
- W2804368052 hasConcept C153180895 @default.
- W2804368052 hasConcept C154945302 @default.
- W2804368052 hasConcept C163716315 @default.
- W2804368052 hasConcept C2776135515 @default.
- W2804368052 hasConcept C33923547 @default.
- W2804368052 hasConcept C41008148 @default.
- W2804368052 hasConcept C49937458 @default.
- W2804368052 hasConcept C50644808 @default.
- W2804368052 hasConcept C58973888 @default.
- W2804368052 hasConcept C61326573 @default.
- W2804368052 hasConcept C62520636 @default.
- W2804368052 hasConcept C74193536 @default.
- W2804368052 hasConcept C81692654 @default.
- W2804368052 hasConcept C83546350 @default.
- W2804368052 hasConceptScore W2804368052C105795698 @default.
- W2804368052 hasConceptScore W2804368052C108583219 @default.
- W2804368052 hasConceptScore W2804368052C114614502 @default.
- W2804368052 hasConceptScore W2804368052C119857082 @default.
- W2804368052 hasConceptScore W2804368052C121332964 @default.
- W2804368052 hasConceptScore W2804368052C136389625 @default.
- W2804368052 hasConceptScore W2804368052C152877465 @default.
- W2804368052 hasConceptScore W2804368052C153180895 @default.
- W2804368052 hasConceptScore W2804368052C154945302 @default.
- W2804368052 hasConceptScore W2804368052C163716315 @default.
- W2804368052 hasConceptScore W2804368052C2776135515 @default.
- W2804368052 hasConceptScore W2804368052C33923547 @default.
- W2804368052 hasConceptScore W2804368052C41008148 @default.
- W2804368052 hasConceptScore W2804368052C49937458 @default.
- W2804368052 hasConceptScore W2804368052C50644808 @default.
- W2804368052 hasConceptScore W2804368052C58973888 @default.
- W2804368052 hasConceptScore W2804368052C61326573 @default.
- W2804368052 hasConceptScore W2804368052C62520636 @default.
- W2804368052 hasConceptScore W2804368052C74193536 @default.
- W2804368052 hasConceptScore W2804368052C81692654 @default.
- W2804368052 hasConceptScore W2804368052C83546350 @default.
- W2804368052 hasLocation W28043680521 @default.
- W2804368052 hasOpenAccess W2804368052 @default.