Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804418531> ?p ?o ?g. }
- W2804418531 endingPage "166" @default.
- W2804418531 startingPage "141" @default.
- W2804418531 abstract "Due to its practical importance, the diagnosis of rolling element bearing has attracted constant interest in the scientific community. At the incipient stage of a failure, the measured vibration signal typically consists of a series of repetitive transients immerged in background noise. Although they are usually carried in high frequency bands due to the high stiffness of bearings, they are fairly weak compared with surrounding noise and other interfering signals. In addition, taking random slips and fluctuations into account, the transients produced by impacts are not strictly periodic but rather tend to be random cyclostationary. This makes the diagnosis of rolling element bearing quite challenging and, consequently, various signal processing techniques have been developed for either the detection, the identification or the extraction of the fault, whose combination asks for a high level of expertise of the user. The aim of this paper is to address all these objectives at once, in the same algorithm, by proposing a semi-automated method that requires the setting of only one parameter. It is rooted on a probabilistic model, in the form of a mixture of Gaussians, endowed with a hidden variable that indicates the occurrence of impacts. The method is shown to be optimal for detection in the Neyman-Pearson sense, it returns an envelope spectrum comparable to the best that can be obtained by other means – which often require a careful pre-filtering step – from which fault frequencies can be identified, and it eventually returns the fault signal from which subsequent severity/health indicators can be computed. There is almost no demand on the user’s expertise (apart from setting the frequency resolution), even though the method does not address the decision part. The performance is investigated on synthetic signals and its robustness is also verified on several vibration signals measured on test-rigs. Results are found superior or at least equivalent to those of the conventional semi-automated method based on the fast kurtogram in combination with the envelope analysis." @default.
- W2804418531 created "2018-06-01" @default.
- W2804418531 creator A5006610668 @default.
- W2804418531 creator A5068863026 @default.
- W2804418531 creator A5076879793 @default.
- W2804418531 date "2018-10-01" @default.
- W2804418531 modified "2023-10-16" @default.
- W2804418531 title "Semi-automated diagnosis of bearing faults based on a hidden Markov model of the vibration signals" @default.
- W2804418531 cites W1196777648 @default.
- W2804418531 cites W1587395205 @default.
- W2804418531 cites W1784606056 @default.
- W2804418531 cites W1824250235 @default.
- W2804418531 cites W1948271374 @default.
- W2804418531 cites W1964511482 @default.
- W2804418531 cites W1970166607 @default.
- W2804418531 cites W1971521993 @default.
- W2804418531 cites W1976479130 @default.
- W2804418531 cites W1978271504 @default.
- W2804418531 cites W1978670814 @default.
- W2804418531 cites W1982755720 @default.
- W2804418531 cites W1984516393 @default.
- W2804418531 cites W1985110006 @default.
- W2804418531 cites W1985437849 @default.
- W2804418531 cites W1993482680 @default.
- W2804418531 cites W2003202593 @default.
- W2804418531 cites W2003625650 @default.
- W2804418531 cites W2003945139 @default.
- W2804418531 cites W2007201064 @default.
- W2804418531 cites W2022706486 @default.
- W2804418531 cites W2028328787 @default.
- W2804418531 cites W2029230244 @default.
- W2804418531 cites W2031454283 @default.
- W2804418531 cites W2033777252 @default.
- W2804418531 cites W2046674752 @default.
- W2804418531 cites W2047857782 @default.
- W2804418531 cites W2063483719 @default.
- W2804418531 cites W2069962935 @default.
- W2804418531 cites W2071712140 @default.
- W2804418531 cites W2078606552 @default.
- W2804418531 cites W2091205549 @default.
- W2804418531 cites W2092923759 @default.
- W2804418531 cites W2093593093 @default.
- W2804418531 cites W2098390287 @default.
- W2804418531 cites W2102211123 @default.
- W2804418531 cites W2132487028 @default.
- W2804418531 cites W2135479611 @default.
- W2804418531 cites W2141802348 @default.
- W2804418531 cites W2147091768 @default.
- W2804418531 cites W2156142078 @default.
- W2804418531 cites W2157866479 @default.
- W2804418531 cites W2160154760 @default.
- W2804418531 cites W2173008373 @default.
- W2804418531 cites W2189028327 @default.
- W2804418531 cites W2193556153 @default.
- W2804418531 cites W2212038157 @default.
- W2804418531 cites W2301005476 @default.
- W2804418531 cites W2316847464 @default.
- W2804418531 cites W2317595875 @default.
- W2804418531 cites W2346053568 @default.
- W2804418531 cites W2346585872 @default.
- W2804418531 cites W2354630311 @default.
- W2804418531 cites W2416436338 @default.
- W2804418531 cites W243674440 @default.
- W2804418531 cites W2437984376 @default.
- W2804418531 cites W2483579737 @default.
- W2804418531 cites W2491643545 @default.
- W2804418531 cites W2567360389 @default.
- W2804418531 cites W2567407101 @default.
- W2804418531 cites W2568969116 @default.
- W2804418531 cites W2582889599 @default.
- W2804418531 cites W2585416310 @default.
- W2804418531 cites W2595889413 @default.
- W2804418531 cites W2598096030 @default.
- W2804418531 cites W2607505546 @default.
- W2804418531 cites W2608921489 @default.
- W2804418531 cites W2740883815 @default.
- W2804418531 cites W427289305 @default.
- W2804418531 doi "https://doi.org/10.1016/j.measurement.2018.05.040" @default.
- W2804418531 hasPublicationYear "2018" @default.
- W2804418531 type Work @default.
- W2804418531 sameAs 2804418531 @default.
- W2804418531 citedByCount "48" @default.
- W2804418531 countsByYear W28044185312018 @default.
- W2804418531 countsByYear W28044185312019 @default.
- W2804418531 countsByYear W28044185312020 @default.
- W2804418531 countsByYear W28044185312021 @default.
- W2804418531 countsByYear W28044185312022 @default.
- W2804418531 countsByYear W28044185312023 @default.
- W2804418531 crossrefType "journal-article" @default.
- W2804418531 hasAuthorship W2804418531A5006610668 @default.
- W2804418531 hasAuthorship W2804418531A5068863026 @default.
- W2804418531 hasAuthorship W2804418531A5076879793 @default.
- W2804418531 hasBestOaLocation W28044185312 @default.
- W2804418531 hasConcept C11413529 @default.
- W2804418531 hasConcept C115961682 @default.
- W2804418531 hasConcept C116834253 @default.
- W2804418531 hasConcept C119599485 @default.
- W2804418531 hasConcept C119857082 @default.