Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804445866> ?p ?o ?g. }
- W2804445866 abstract "Human Vγ9Vδ2 T cells have the capacity to detect supra-physiological concentrations of phosphoantigens (pAgs) generated by the mevalonate (Mev) pathway of mammalian cells under specific circumstances. Isopentenyl pyrophosphate (IPP) is the prototypic pAg recognized by Vγ9Vδ2 T cells. B-cell derived tumor cells (i.e., lymphoma and myeloma cells) and dendritic cells (DCs) are privileged targets of Vγ9Vδ2 T cells because they generate significant amounts of IPP which can be boosted with zoledronic acid (ZA). ZA is the most potent aminobisphosphonate (NBP) clinically available to inhibit osteoclast activation and a very potent inhibitor of farnesyl pyrophosphate synthase in the Mev pathway. ZA-treated DCs generate and release in the supernatants picomolar IPP concentrations which are sufficient to induce the activation of Vγ9Vδ2 T cells. We have recently shown that the ATP-binding cassette transporter A1 (ABCA1) plays a major role in the extracellular release of IPP from ZA-treated DCs. This novel ABCA1 function is fine-tuned by physical interactions with IPP, apolipoprotein A-I (apoA-I), and butyrophilin-3A1 (BTN3A1). The mechanisms by which soluble IPP induces Vγ9Vδ2 T-cell activation remain to be elucidated. It is possible that soluble IPP binds to BTN3A1, apoA-I, or other unknown molecules on the cell surface of bystander cells like monocytes, NK cells, Vγ9Vδ2 T cells, or any other cell locally present. Investigating this scenario may represent a unique opportunity to further characterize the role of BTN3A1 and other molecules in the recognition of soluble IPP by Vγ9Vδ2 T cells." @default.
- W2804445866 created "2018-06-01" @default.
- W2804445866 creator A5006463761 @default.
- W2804445866 creator A5008807112 @default.
- W2804445866 creator A5012807744 @default.
- W2804445866 date "2018-06-08" @default.
- W2804445866 modified "2023-10-12" @default.
- W2804445866 title "ABCA1, apoA-I, and BTN3A1: A Legitimate Ménage à Trois in Dendritic Cells" @default.
- W2804445866 cites W1488882307 @default.
- W2804445866 cites W1535243328 @default.
- W2804445866 cites W1585966599 @default.
- W2804445866 cites W1587781698 @default.
- W2804445866 cites W1601232563 @default.
- W2804445866 cites W1804040094 @default.
- W2804445866 cites W1887703508 @default.
- W2804445866 cites W1904545123 @default.
- W2804445866 cites W1967136310 @default.
- W2804445866 cites W1968710895 @default.
- W2804445866 cites W1970143306 @default.
- W2804445866 cites W1972120590 @default.
- W2804445866 cites W1976452164 @default.
- W2804445866 cites W1977259157 @default.
- W2804445866 cites W1979819707 @default.
- W2804445866 cites W1981756981 @default.
- W2804445866 cites W1986699786 @default.
- W2804445866 cites W1990455553 @default.
- W2804445866 cites W1992794673 @default.
- W2804445866 cites W1995254015 @default.
- W2804445866 cites W1999094102 @default.
- W2804445866 cites W2003797329 @default.
- W2804445866 cites W2010361151 @default.
- W2804445866 cites W2012636177 @default.
- W2804445866 cites W2014651277 @default.
- W2804445866 cites W2018010015 @default.
- W2804445866 cites W2025859745 @default.
- W2804445866 cites W2025970174 @default.
- W2804445866 cites W2030727563 @default.
- W2804445866 cites W2033607417 @default.
- W2804445866 cites W2041367424 @default.
- W2804445866 cites W2044085066 @default.
- W2804445866 cites W2047908649 @default.
- W2804445866 cites W2060181247 @default.
- W2804445866 cites W2062159116 @default.
- W2804445866 cites W2066288680 @default.
- W2804445866 cites W2067592470 @default.
- W2804445866 cites W2073312795 @default.
- W2804445866 cites W2073334951 @default.
- W2804445866 cites W2075754848 @default.
- W2804445866 cites W2077546229 @default.
- W2804445866 cites W2087743062 @default.
- W2804445866 cites W2100915708 @default.
- W2804445866 cites W2106417441 @default.
- W2804445866 cites W2113296516 @default.
- W2804445866 cites W2121914411 @default.
- W2804445866 cites W2129513363 @default.
- W2804445866 cites W2130967257 @default.
- W2804445866 cites W2136199333 @default.
- W2804445866 cites W2143649884 @default.
- W2804445866 cites W2144446516 @default.
- W2804445866 cites W2145144505 @default.
- W2804445866 cites W2164173157 @default.
- W2804445866 cites W2165799265 @default.
- W2804445866 cites W2170263258 @default.
- W2804445866 cites W2173550086 @default.
- W2804445866 cites W2183777144 @default.
- W2804445866 cites W2206208191 @default.
- W2804445866 cites W2330024479 @default.
- W2804445866 cites W2367023947 @default.
- W2804445866 cites W2402832155 @default.
- W2804445866 cites W2416061639 @default.
- W2804445866 cites W2465126845 @default.
- W2804445866 cites W2469138161 @default.
- W2804445866 cites W2521045892 @default.
- W2804445866 cites W2571887961 @default.
- W2804445866 cites W2604712211 @default.
- W2804445866 cites W2614024641 @default.
- W2804445866 cites W2616471083 @default.
- W2804445866 cites W2623744214 @default.
- W2804445866 cites W2724404172 @default.
- W2804445866 cites W2735786303 @default.
- W2804445866 cites W2740697934 @default.
- W2804445866 cites W2743070812 @default.
- W2804445866 cites W2752877239 @default.
- W2804445866 cites W2773191002 @default.
- W2804445866 cites W2777644429 @default.
- W2804445866 cites W2784098749 @default.
- W2804445866 cites W2787964858 @default.
- W2804445866 cites W2788682499 @default.
- W2804445866 cites W4244174381 @default.
- W2804445866 cites W60551495 @default.
- W2804445866 cites W805043688 @default.
- W2804445866 cites W1479996001 @default.
- W2804445866 doi "https://doi.org/10.3389/fimmu.2018.01246" @default.
- W2804445866 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6002486" @default.
- W2804445866 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29937767" @default.
- W2804445866 hasPublicationYear "2018" @default.
- W2804445866 type Work @default.
- W2804445866 sameAs 2804445866 @default.
- W2804445866 citedByCount "15" @default.
- W2804445866 countsByYear W28044458662018 @default.