Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804564480> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2804564480 endingPage "136" @default.
- W2804564480 startingPage "128" @default.
- W2804564480 abstract "Simulation-based battery design encounters the difficulty of high computational cost. This paper presents a systematic approach based on the artificial neural network to reduce the computational burden of battery design by several orders-of-magnitude. Two neural networks are constructed using the finite element simulation results from a thermo-electrochemical model. The first neural network serves as a classifier to predict whether a set of input variables is physically feasible. The second neural network yields specific energy and specific power. Both neural networks are validated using extra finite element simulations out of the training data. With a global sensitivity analysis using the neural network, we quantify the effect of input variables on specific energy and specific power by evaluating large combinations of input variables, which is computationally prohibitive for finite element simulations. Among all parameters, the applied C-rate has the largest influence on specific power, while the electrode thickness and porosity are the dominant factors affecting specific energy. Based on this finding, we generate a design map that fulfills the requirements of both specific energy and specific power. Inparticular, we highlight the value of neural network in handling the non-linear, complex and computationally expensive problem of battery design and optimization." @default.
- W2804564480 created "2018-06-01" @default.
- W2804564480 creator A5029510744 @default.
- W2804564480 creator A5049909891 @default.
- W2804564480 creator A5053541912 @default.
- W2804564480 creator A5086909873 @default.
- W2804564480 date "2018-08-01" @default.
- W2804564480 modified "2023-10-16" @default.
- W2804564480 title "Application of artificial neural networks in design of lithium-ion batteries" @default.
- W2804564480 cites W1533640307 @default.
- W2804564480 cites W1875230349 @default.
- W2804564480 cites W1967219389 @default.
- W2804564480 cites W1969841826 @default.
- W2804564480 cites W1972645483 @default.
- W2804564480 cites W1975903935 @default.
- W2804564480 cites W1985945111 @default.
- W2804564480 cites W1987296189 @default.
- W2804564480 cites W1994927323 @default.
- W2804564480 cites W1997084786 @default.
- W2804564480 cites W2007781011 @default.
- W2804564480 cites W2048831521 @default.
- W2804564480 cites W2050591158 @default.
- W2804564480 cites W2060889730 @default.
- W2804564480 cites W2070976660 @default.
- W2804564480 cites W2074289163 @default.
- W2804564480 cites W2082522857 @default.
- W2804564480 cites W2084689939 @default.
- W2804564480 cites W2101136438 @default.
- W2804564480 cites W2101589741 @default.
- W2804564480 cites W2113449668 @default.
- W2804564480 cites W2162945380 @default.
- W2804564480 cites W2169762058 @default.
- W2804564480 cites W2243580176 @default.
- W2804564480 cites W2257979135 @default.
- W2804564480 cites W2626330925 @default.
- W2804564480 doi "https://doi.org/10.1016/j.jpowsour.2018.05.040" @default.
- W2804564480 hasPublicationYear "2018" @default.
- W2804564480 type Work @default.
- W2804564480 sameAs 2804564480 @default.
- W2804564480 citedByCount "67" @default.
- W2804564480 countsByYear W28045644802018 @default.
- W2804564480 countsByYear W28045644802019 @default.
- W2804564480 countsByYear W28045644802020 @default.
- W2804564480 countsByYear W28045644802021 @default.
- W2804564480 countsByYear W28045644802022 @default.
- W2804564480 countsByYear W28045644802023 @default.
- W2804564480 crossrefType "journal-article" @default.
- W2804564480 hasAuthorship W2804564480A5029510744 @default.
- W2804564480 hasAuthorship W2804564480A5049909891 @default.
- W2804564480 hasAuthorship W2804564480A5053541912 @default.
- W2804564480 hasAuthorship W2804564480A5086909873 @default.
- W2804564480 hasBestOaLocation W28045644801 @default.
- W2804564480 hasConcept C121332964 @default.
- W2804564480 hasConcept C127413603 @default.
- W2804564480 hasConcept C135628077 @default.
- W2804564480 hasConcept C154945302 @default.
- W2804564480 hasConcept C163258240 @default.
- W2804564480 hasConcept C41008148 @default.
- W2804564480 hasConcept C50644808 @default.
- W2804564480 hasConcept C555008776 @default.
- W2804564480 hasConcept C62520636 @default.
- W2804564480 hasConcept C66938386 @default.
- W2804564480 hasConceptScore W2804564480C121332964 @default.
- W2804564480 hasConceptScore W2804564480C127413603 @default.
- W2804564480 hasConceptScore W2804564480C135628077 @default.
- W2804564480 hasConceptScore W2804564480C154945302 @default.
- W2804564480 hasConceptScore W2804564480C163258240 @default.
- W2804564480 hasConceptScore W2804564480C41008148 @default.
- W2804564480 hasConceptScore W2804564480C50644808 @default.
- W2804564480 hasConceptScore W2804564480C555008776 @default.
- W2804564480 hasConceptScore W2804564480C62520636 @default.
- W2804564480 hasConceptScore W2804564480C66938386 @default.
- W2804564480 hasFunder F4320306076 @default.
- W2804564480 hasLocation W28045644801 @default.
- W2804564480 hasOpenAccess W2804564480 @default.
- W2804564480 hasPrimaryLocation W28045644801 @default.
- W2804564480 hasRelatedWork W1966753479 @default.
- W2804564480 hasRelatedWork W2011633066 @default.
- W2804564480 hasRelatedWork W2055836843 @default.
- W2804564480 hasRelatedWork W2069701013 @default.
- W2804564480 hasRelatedWork W2095941963 @default.
- W2804564480 hasRelatedWork W2366062865 @default.
- W2804564480 hasRelatedWork W2755775996 @default.
- W2804564480 hasRelatedWork W2760505775 @default.
- W2804564480 hasRelatedWork W2773728674 @default.
- W2804564480 hasRelatedWork W4200392369 @default.
- W2804564480 hasVolume "395" @default.
- W2804564480 isParatext "false" @default.
- W2804564480 isRetracted "false" @default.
- W2804564480 magId "2804564480" @default.
- W2804564480 workType "article" @default.