Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804744787> ?p ?o ?g. }
- W2804744787 endingPage "4130" @default.
- W2804744787 startingPage "4118" @default.
- W2804744787 abstract "Fusing a low spatial resolution hyperspectral image (LR-HSI) with a high spatial resolution multispectral image (HR-MSI) to obtain a high spatial resolution hyperspectral image (HR-HSI) has attracted increasing interest in recent years. In this paper, we propose a coupled sparse tensor factorization (CSTF) based approach for fusing such images. In the proposed CSTF method, we consider an HR-HSI as a three-dimensional tensor and redefine the fusion problem as the estimation of a core tensor and dictionaries of the three modes. The high spatial-spectral correlations in the HR-HSI are modeled by incorporating a regularizer which promotes sparse core tensors. The estimation of the dictionaries and the core tensor are formulated as a coupled tensor factorization of the LR-HSI and of the HR-MSI. Experiments on two remotely sensed HSIs demonstrate the superiority of the proposed CSTF algorithm over current state-of-the-art HSI-MSI fusion approaches." @default.
- W2804744787 created "2018-06-01" @default.
- W2804744787 creator A5017508063 @default.
- W2804744787 creator A5026156663 @default.
- W2804744787 creator A5065061505 @default.
- W2804744787 creator A5067097659 @default.
- W2804744787 date "2018-08-01" @default.
- W2804744787 modified "2023-10-14" @default.
- W2804744787 title "Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization" @default.
- W2804744787 cites W1916874600 @default.
- W2804744787 cites W1928626817 @default.
- W2804744787 cites W1963826206 @default.
- W2804744787 cites W1967138577 @default.
- W2804744787 cites W1976615758 @default.
- W2804744787 cites W1990231296 @default.
- W2804744787 cites W2011830145 @default.
- W2804744787 cites W2021046129 @default.
- W2804744787 cites W2022470997 @default.
- W2804744787 cites W2024165284 @default.
- W2804744787 cites W2031007444 @default.
- W2804744787 cites W2046904217 @default.
- W2804744787 cites W2058532290 @default.
- W2804744787 cites W2074126754 @default.
- W2804744787 cites W2087263574 @default.
- W2804744787 cites W2092116045 @default.
- W2804744787 cites W2097259623 @default.
- W2804744787 cites W2100329651 @default.
- W2804744787 cites W2103192805 @default.
- W2804744787 cites W2125298866 @default.
- W2804744787 cites W2129732816 @default.
- W2804744787 cites W2129953395 @default.
- W2804744787 cites W2144948131 @default.
- W2804744787 cites W2156593994 @default.
- W2804744787 cites W2159269332 @default.
- W2804744787 cites W2194818953 @default.
- W2804744787 cites W2221899823 @default.
- W2804744787 cites W2327302159 @default.
- W2804744787 cites W2339428543 @default.
- W2804744787 cites W2394774286 @default.
- W2804744787 cites W2475098969 @default.
- W2804744787 cites W2507855991 @default.
- W2804744787 cites W2508114009 @default.
- W2804744787 cites W2530006000 @default.
- W2804744787 cites W2539917949 @default.
- W2804744787 cites W2566771666 @default.
- W2804744787 cites W2595902385 @default.
- W2804744787 cites W2737207197 @default.
- W2804744787 cites W2748530166 @default.
- W2804744787 cites W2768211636 @default.
- W2804744787 cites W2790888198 @default.
- W2804744787 cites W2792473404 @default.
- W2804744787 cites W2794048225 @default.
- W2804744787 cites W2963442801 @default.
- W2804744787 cites W3099843321 @default.
- W2804744787 cites W3102253068 @default.
- W2804744787 cites W3102588113 @default.
- W2804744787 cites W3104960002 @default.
- W2804744787 cites W3124414826 @default.
- W2804744787 cites W4292363360 @default.
- W2804744787 doi "https://doi.org/10.1109/tip.2018.2836307" @default.
- W2804744787 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29994767" @default.
- W2804744787 hasPublicationYear "2018" @default.
- W2804744787 type Work @default.
- W2804744787 sameAs 2804744787 @default.
- W2804744787 citedByCount "315" @default.
- W2804744787 countsByYear W28047447872017 @default.
- W2804744787 countsByYear W28047447872018 @default.
- W2804744787 countsByYear W28047447872019 @default.
- W2804744787 countsByYear W28047447872020 @default.
- W2804744787 countsByYear W28047447872021 @default.
- W2804744787 countsByYear W28047447872022 @default.
- W2804744787 countsByYear W28047447872023 @default.
- W2804744787 crossrefType "journal-article" @default.
- W2804744787 hasAuthorship W2804744787A5017508063 @default.
- W2804744787 hasAuthorship W2804744787A5026156663 @default.
- W2804744787 hasAuthorship W2804744787A5065061505 @default.
- W2804744787 hasAuthorship W2804744787A5067097659 @default.
- W2804744787 hasConcept C153180895 @default.
- W2804744787 hasConcept C154945302 @default.
- W2804744787 hasConcept C155281189 @default.
- W2804744787 hasConcept C159078339 @default.
- W2804744787 hasConcept C173163844 @default.
- W2804744787 hasConcept C202444582 @default.
- W2804744787 hasConcept C205372480 @default.
- W2804744787 hasConcept C31972630 @default.
- W2804744787 hasConcept C33923547 @default.
- W2804744787 hasConcept C41008148 @default.
- W2804744787 hasConceptScore W2804744787C153180895 @default.
- W2804744787 hasConceptScore W2804744787C154945302 @default.
- W2804744787 hasConceptScore W2804744787C155281189 @default.
- W2804744787 hasConceptScore W2804744787C159078339 @default.
- W2804744787 hasConceptScore W2804744787C173163844 @default.
- W2804744787 hasConceptScore W2804744787C202444582 @default.
- W2804744787 hasConceptScore W2804744787C205372480 @default.
- W2804744787 hasConceptScore W2804744787C31972630 @default.
- W2804744787 hasConceptScore W2804744787C33923547 @default.
- W2804744787 hasConceptScore W2804744787C41008148 @default.
- W2804744787 hasFunder F4320321001 @default.