Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804764440> ?p ?o ?g. }
- W2804764440 endingPage "358" @default.
- W2804764440 startingPage "347" @default.
- W2804764440 abstract "Abstract Efficient storage of solar and wind power is one of the most challenging tasks still limiting the utilization of the prime but intermittent renewable energy sources. The direct storage of concentrated solar power in renewable fuels via thermochemical splitting of water and carbon dioxide on a redox material is a scalable approach with up to 54% solar-to-fuel conversion efficiency. Despite progress, the search for earth-abundant materials that can provide and maintain high H2 and CO production rates over long period of high-temperature cycles continues. Here, we report a strategy to unlock the use of manganese, the 12th most abundant element in the Earth's crust, for thermochemical synthesis of solar fuels, achieving superior thermochemical stability, oxygen exchange capacity, and up to seven times higher mass-specific H2 and CO yield than cerium dioxide. We observe that incorporation of a small fraction of cerium ions in the manganese (II,III) oxide crystal lattice drastically increases its oxygen ion mobility, allowing its reduction from oxide to carbide during methane partial oxidation with simultaneous Ce exsolution. High CO2 and H2O splitting rates are achieved by re-oxidation of the carbide to manganese (II) oxide with simultaneous reincorporation of the cerium ions. We demonstrate that the oxide to carbide reaction is highly reversible achieving remarkable CO2 splitting rates over 100 thermochemical cycles of methane partial oxidation and CO2 splitting, and preserving the initial oxygen exchange capacity of 0.65 molO m o l M n − 1 and 89% of the fuel production rates. Due to this extraordinarily high reversible oxygen exchange capacity, the 3% Ce-doped manganese oxide achieves an average mass-specific CO yield for CO2 splitting of 17.72 mmolCO g−1, which is significantly higher than that previously achieved in thermochemical redox cycles. More generally, these findings suggest that incorporation of small soluble amounts of cerium in earth-abundant transition metal oxides like manganese oxide is a powerful approach to enable solar thermochemical fuel synthesis." @default.
- W2804764440 created "2018-06-01" @default.
- W2804764440 creator A5003065832 @default.
- W2804764440 creator A5018399570 @default.
- W2804764440 creator A5029471311 @default.
- W2804764440 creator A5046945765 @default.
- W2804764440 creator A5048926556 @default.
- W2804764440 creator A5049411321 @default.
- W2804764440 creator A5050052022 @default.
- W2804764440 creator A5061778377 @default.
- W2804764440 creator A5063747940 @default.
- W2804764440 creator A5063807825 @default.
- W2804764440 creator A5081363234 @default.
- W2804764440 date "2018-08-01" @default.
- W2804764440 modified "2023-10-07" @default.
- W2804764440 title "Earth-abundant transition metal oxides with extraordinary reversible oxygen exchange capacity for efficient thermochemical synthesis of solar fuels" @default.
- W2804764440 cites W1893432739 @default.
- W2804764440 cites W1911810274 @default.
- W2804764440 cites W1965740871 @default.
- W2804764440 cites W1968169605 @default.
- W2804764440 cites W1969678804 @default.
- W2804764440 cites W1970994871 @default.
- W2804764440 cites W1974635236 @default.
- W2804764440 cites W1975916288 @default.
- W2804764440 cites W1980562949 @default.
- W2804764440 cites W1984020769 @default.
- W2804764440 cites W1988933206 @default.
- W2804764440 cites W1991666137 @default.
- W2804764440 cites W1996621659 @default.
- W2804764440 cites W1999259745 @default.
- W2804764440 cites W2002629165 @default.
- W2804764440 cites W2004737400 @default.
- W2804764440 cites W2008624509 @default.
- W2804764440 cites W2025493685 @default.
- W2804764440 cites W2032268458 @default.
- W2804764440 cites W2032423021 @default.
- W2804764440 cites W2034751371 @default.
- W2804764440 cites W2035134882 @default.
- W2804764440 cites W2035571728 @default.
- W2804764440 cites W2039078473 @default.
- W2804764440 cites W2040339582 @default.
- W2804764440 cites W2043647392 @default.
- W2804764440 cites W2043799417 @default.
- W2804764440 cites W2053851974 @default.
- W2804764440 cites W2055652512 @default.
- W2804764440 cites W2057647471 @default.
- W2804764440 cites W2064246399 @default.
- W2804764440 cites W2070851259 @default.
- W2804764440 cites W2074406055 @default.
- W2804764440 cites W2077856391 @default.
- W2804764440 cites W2078233261 @default.
- W2804764440 cites W2080113208 @default.
- W2804764440 cites W2083788575 @default.
- W2804764440 cites W2087368747 @default.
- W2804764440 cites W2092934313 @default.
- W2804764440 cites W2093242227 @default.
- W2804764440 cites W2098547240 @default.
- W2804764440 cites W2125058178 @default.
- W2804764440 cites W2148513551 @default.
- W2804764440 cites W2151789245 @default.
- W2804764440 cites W2174451630 @default.
- W2804764440 cites W2187571394 @default.
- W2804764440 cites W2233332741 @default.
- W2804764440 cites W2236146911 @default.
- W2804764440 cites W2257687360 @default.
- W2804764440 cites W2282410032 @default.
- W2804764440 cites W2314665557 @default.
- W2804764440 cites W2319561754 @default.
- W2804764440 cites W2334193822 @default.
- W2804764440 cites W2406586666 @default.
- W2804764440 cites W2468108504 @default.
- W2804764440 cites W2471718805 @default.
- W2804764440 cites W2514233718 @default.
- W2804764440 cites W2540298016 @default.
- W2804764440 cites W2714506000 @default.
- W2804764440 cites W2767610164 @default.
- W2804764440 cites W2784244817 @default.
- W2804764440 doi "https://doi.org/10.1016/j.nanoen.2018.05.045" @default.
- W2804764440 hasPublicationYear "2018" @default.
- W2804764440 type Work @default.
- W2804764440 sameAs 2804764440 @default.
- W2804764440 citedByCount "39" @default.
- W2804764440 countsByYear W28047644402018 @default.
- W2804764440 countsByYear W28047644402019 @default.
- W2804764440 countsByYear W28047644402020 @default.
- W2804764440 countsByYear W28047644402021 @default.
- W2804764440 countsByYear W28047644402022 @default.
- W2804764440 countsByYear W28047644402023 @default.
- W2804764440 crossrefType "journal-article" @default.
- W2804764440 hasAuthorship W2804764440A5003065832 @default.
- W2804764440 hasAuthorship W2804764440A5018399570 @default.
- W2804764440 hasAuthorship W2804764440A5029471311 @default.
- W2804764440 hasAuthorship W2804764440A5046945765 @default.
- W2804764440 hasAuthorship W2804764440A5048926556 @default.
- W2804764440 hasAuthorship W2804764440A5049411321 @default.
- W2804764440 hasAuthorship W2804764440A5050052022 @default.
- W2804764440 hasAuthorship W2804764440A5061778377 @default.
- W2804764440 hasAuthorship W2804764440A5063747940 @default.