Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804765537> ?p ?o ?g. }
- W2804765537 endingPage "3612" @default.
- W2804765537 startingPage "3601" @default.
- W2804765537 abstract "Predicting crystal structure has always been a challenging problem for physical sciences. Recently, computational methods have been built to predict crystal structure with success but have been limited in scope and computational time. In this paper, we review computational methods such as density functional theory and machine learning methods used to predict crystal structure. We also explored the breadth versus accuracy of building a model to predict across any crystal structure using machine learning. We extracted 24 913 unique chemical formulas existing between 290 and 310 K from the Pearson Crystal Database. Of these 24 913 formulas, there exists 10 711 unique crystal structures referred to as entry prototypes. Common entries might have hundreds of chemical compositions, while the vast majority of entry prototypes is represented by fewer than ten unique compositions. To include all data in our predictions, entry prototypes that lacked a minimum number of representatives were relabeled as “Other”. By selecting the minimum numbers to be 150, 100, 70, 40, 20, and 10, we explored how limiting class sizes affected performance. Using each minimum number to reorganize the data, we looked at the classification performance metrics: accuracy, precision, and recall. Accuracy ranged from 97 ± 2 to 85 ± 2%; average precision ranged from 86 ± 2 to 79 ± 2%, while average recall ranged from 73 ± 2 to 54 ± 2% for minimum-class representatives from 150 to 10, respectively." @default.
- W2804765537 created "2018-06-01" @default.
- W2804765537 creator A5003301534 @default.
- W2804765537 creator A5050610772 @default.
- W2804765537 creator A5056006831 @default.
- W2804765537 date "2018-05-19" @default.
- W2804765537 modified "2023-10-15" @default.
- W2804765537 title "Machine Learning and Energy Minimization Approaches for Crystal Structure Predictions: A Review and New Horizons" @default.
- W2804765537 cites W1009208869 @default.
- W2804765537 cites W1012367467 @default.
- W2804765537 cites W1481666845 @default.
- W2804765537 cites W1584200143 @default.
- W2804765537 cites W1800437104 @default.
- W2804765537 cites W1949231392 @default.
- W2804765537 cites W1967499431 @default.
- W2804765537 cites W1977185105 @default.
- W2804765537 cites W1979132333 @default.
- W2804765537 cites W1980446405 @default.
- W2804765537 cites W1982598895 @default.
- W2804765537 cites W1983479840 @default.
- W2804765537 cites W1988833834 @default.
- W2804765537 cites W1992732132 @default.
- W2804765537 cites W2000009216 @default.
- W2804765537 cites W2008682738 @default.
- W2804765537 cites W2009438659 @default.
- W2804765537 cites W2010277200 @default.
- W2804765537 cites W2012604993 @default.
- W2804765537 cites W2013795311 @default.
- W2804765537 cites W2013797972 @default.
- W2804765537 cites W2018766340 @default.
- W2804765537 cites W2020488375 @default.
- W2804765537 cites W2024060531 @default.
- W2804765537 cites W2028070629 @default.
- W2804765537 cites W2031558918 @default.
- W2804765537 cites W2033129967 @default.
- W2804765537 cites W2034966771 @default.
- W2804765537 cites W2034967049 @default.
- W2804765537 cites W2037924350 @default.
- W2804765537 cites W2038985600 @default.
- W2804765537 cites W2040049280 @default.
- W2804765537 cites W2044375044 @default.
- W2804765537 cites W2057157558 @default.
- W2804765537 cites W2060745946 @default.
- W2804765537 cites W2065189559 @default.
- W2804765537 cites W2065467771 @default.
- W2804765537 cites W2068859938 @default.
- W2804765537 cites W2072067681 @default.
- W2804765537 cites W2074616700 @default.
- W2804765537 cites W2078000251 @default.
- W2804765537 cites W2086774128 @default.
- W2804765537 cites W2087186140 @default.
- W2804765537 cites W2087347434 @default.
- W2804765537 cites W2095843039 @default.
- W2804765537 cites W2097365790 @default.
- W2804765537 cites W2097968133 @default.
- W2804765537 cites W2100800890 @default.
- W2804765537 cites W2115096312 @default.
- W2804765537 cites W2122117845 @default.
- W2804765537 cites W2124974356 @default.
- W2804765537 cites W2129128169 @default.
- W2804765537 cites W2132701358 @default.
- W2804765537 cites W2141432903 @default.
- W2804765537 cites W2156843963 @default.
- W2804765537 cites W2166735031 @default.
- W2804765537 cites W2200920654 @default.
- W2804765537 cites W2219523950 @default.
- W2804765537 cites W2292646695 @default.
- W2804765537 cites W2309959657 @default.
- W2804765537 cites W2310703973 @default.
- W2804765537 cites W2312201898 @default.
- W2804765537 cites W2313966941 @default.
- W2804765537 cites W2314821493 @default.
- W2804765537 cites W2315837940 @default.
- W2804765537 cites W2329000361 @default.
- W2804765537 cites W2331899405 @default.
- W2804765537 cites W2347129741 @default.
- W2804765537 cites W2406005853 @default.
- W2804765537 cites W2415372084 @default.
- W2804765537 cites W2426109273 @default.
- W2804765537 cites W2510169513 @default.
- W2804765537 cites W2516963433 @default.
- W2804765537 cites W2520500207 @default.
- W2804765537 cites W2606104897 @default.
- W2804765537 cites W2616519837 @default.
- W2804765537 cites W2622575628 @default.
- W2804765537 cites W2624679515 @default.
- W2804765537 cites W2755202310 @default.
- W2804765537 cites W2757533756 @default.
- W2804765537 cites W2768828389 @default.
- W2804765537 cites W3099030566 @default.
- W2804765537 cites W4230167402 @default.
- W2804765537 cites W4235055316 @default.
- W2804765537 cites W4235529692 @default.
- W2804765537 cites W4251800481 @default.
- W2804765537 cites W4255600731 @default.
- W2804765537 cites W601070381 @default.
- W2804765537 cites W2939747734 @default.
- W2804765537 doi "https://doi.org/10.1021/acs.chemmater.7b05304" @default.