Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804785704> ?p ?o ?g. }
- W2804785704 endingPage "483" @default.
- W2804785704 startingPage "457" @default.
- W2804785704 abstract "The present work is associated with Bayesian finite element (FE) model updating using modal measurements based on maximizing the posterior probability instead of any sampling based approach. Such Bayesian updating framework usually employs normal distribution in updating of parameters, although normal distribution has usual statistical issues while using non-negative parameters. These issues are proposed to be dealt with incorporating lognormal distribution for non-negative parameters. Detailed formulations are carried out for model updating, uncertainty-estimation and probabilistic detection of changes/damages of structural parameters using combined normal-lognormal probability distribution in this Bayesian framework. Normal and lognormal distributions are considered for eigen-system equation and structural (mass and stiffness) parameters respectively, while these two distributions are jointly considered for likelihood function. Important advantages in FE model updating (e.g. utilization of incomplete measured modal data, non-requirement of mode-matching) are also retained in this combined normal-lognormal distribution based proposed FE model updating approach. For demonstrating the efficiency of this proposed approach, a two dimensional truss structure is considered with multiple damage cases. Satisfactory performances are observed in model updating and subsequent probabilistic estimations, however level of performances are found to be weakened with increasing levels in damage scenario (as usual). Moreover, performances of this proposed FE model updating approach are compared with the typical normal distribution based updating approach for those damage cases demonstrating quite similar level of performances. The proposed approach also demonstrates better computational efficiency (achieving higher accuracy in lesser computation time) in comparison with two prominent Markov Chain Monte Carlo (MCMC) techniques (viz. Metropolis-Hastings algorithm and Gibbs sampling)." @default.
- W2804785704 created "2018-06-01" @default.
- W2804785704 creator A5050562206 @default.
- W2804785704 creator A5055425202 @default.
- W2804785704 date "2018-09-01" @default.
- W2804785704 modified "2023-09-30" @default.
- W2804785704 title "A Bayesian finite element model updating with combined normal and lognormal probability distributions using modal measurements" @default.
- W2804785704 cites W1769978891 @default.
- W2804785704 cites W1859665057 @default.
- W2804785704 cites W1969203123 @default.
- W2804785704 cites W1971275618 @default.
- W2804785704 cites W1982104200 @default.
- W2804785704 cites W1986589624 @default.
- W2804785704 cites W1990396568 @default.
- W2804785704 cites W1997932239 @default.
- W2804785704 cites W1999539637 @default.
- W2804785704 cites W2003856703 @default.
- W2804785704 cites W2018439144 @default.
- W2804785704 cites W2019433653 @default.
- W2804785704 cites W2020999234 @default.
- W2804785704 cites W2024292495 @default.
- W2804785704 cites W2024414262 @default.
- W2804785704 cites W2024908172 @default.
- W2804785704 cites W2041670638 @default.
- W2804785704 cites W2043108941 @default.
- W2804785704 cites W2046455059 @default.
- W2804785704 cites W2056656705 @default.
- W2804785704 cites W2056760934 @default.
- W2804785704 cites W2062258832 @default.
- W2804785704 cites W2062469328 @default.
- W2804785704 cites W2064633509 @default.
- W2804785704 cites W2080671166 @default.
- W2804785704 cites W2081226627 @default.
- W2804785704 cites W2083099298 @default.
- W2804785704 cites W2085003324 @default.
- W2804785704 cites W2087528187 @default.
- W2804785704 cites W2088603669 @default.
- W2804785704 cites W2114313222 @default.
- W2804785704 cites W2115610373 @default.
- W2804785704 cites W2129619441 @default.
- W2804785704 cites W2138309709 @default.
- W2804785704 cites W2138429195 @default.
- W2804785704 cites W2141219460 @default.
- W2804785704 cites W2153576013 @default.
- W2804785704 cites W2154277085 @default.
- W2804785704 cites W2154505817 @default.
- W2804785704 cites W2163942594 @default.
- W2804785704 cites W2169426568 @default.
- W2804785704 cites W2264709743 @default.
- W2804785704 cites W2274097711 @default.
- W2804785704 cites W2289438788 @default.
- W2804785704 cites W2407932374 @default.
- W2804785704 cites W2554277894 @default.
- W2804785704 cites W2584742913 @default.
- W2804785704 cites W2592099022 @default.
- W2804785704 cites W2746428135 @default.
- W2804785704 cites W3122016100 @default.
- W2804785704 doi "https://doi.org/10.1016/j.apm.2018.05.004" @default.
- W2804785704 hasPublicationYear "2018" @default.
- W2804785704 type Work @default.
- W2804785704 sameAs 2804785704 @default.
- W2804785704 citedByCount "25" @default.
- W2804785704 countsByYear W28047857042020 @default.
- W2804785704 countsByYear W28047857042021 @default.
- W2804785704 countsByYear W28047857042022 @default.
- W2804785704 countsByYear W28047857042023 @default.
- W2804785704 crossrefType "journal-article" @default.
- W2804785704 hasAuthorship W2804785704A5050562206 @default.
- W2804785704 hasAuthorship W2804785704A5055425202 @default.
- W2804785704 hasBestOaLocation W28047857041 @default.
- W2804785704 hasConcept C102094743 @default.
- W2804785704 hasConcept C105795698 @default.
- W2804785704 hasConcept C107673813 @default.
- W2804785704 hasConcept C111350023 @default.
- W2804785704 hasConcept C11413529 @default.
- W2804785704 hasConcept C126255220 @default.
- W2804785704 hasConcept C149441793 @default.
- W2804785704 hasConcept C151620405 @default.
- W2804785704 hasConcept C185592680 @default.
- W2804785704 hasConcept C188027245 @default.
- W2804785704 hasConcept C28826006 @default.
- W2804785704 hasConcept C33923547 @default.
- W2804785704 hasConcept C41008148 @default.
- W2804785704 hasConcept C57830394 @default.
- W2804785704 hasConcept C71139939 @default.
- W2804785704 hasConceptScore W2804785704C102094743 @default.
- W2804785704 hasConceptScore W2804785704C105795698 @default.
- W2804785704 hasConceptScore W2804785704C107673813 @default.
- W2804785704 hasConceptScore W2804785704C111350023 @default.
- W2804785704 hasConceptScore W2804785704C11413529 @default.
- W2804785704 hasConceptScore W2804785704C126255220 @default.
- W2804785704 hasConceptScore W2804785704C149441793 @default.
- W2804785704 hasConceptScore W2804785704C151620405 @default.
- W2804785704 hasConceptScore W2804785704C185592680 @default.
- W2804785704 hasConceptScore W2804785704C188027245 @default.
- W2804785704 hasConceptScore W2804785704C28826006 @default.
- W2804785704 hasConceptScore W2804785704C33923547 @default.
- W2804785704 hasConceptScore W2804785704C41008148 @default.