Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804796609> ?p ?o ?g. }
- W2804796609 endingPage "70" @default.
- W2804796609 startingPage "28" @default.
- W2804796609 abstract "A family of cases each containing a small separation bubble is treated by direct numerical simulation (DNS), varying two parameters: the severity of the pressure gradients, generated by suction and blowing across the opposite boundary, and the Reynolds number. Each flow contains a well-developed entry region with essentially zero pressure gradient, and all are adjusted to have the same value for the momentum thickness, extrapolated from the entry region to the centre of the separation bubble. Combined with fully defined boundary conditions this will make comparisons with other simulations and turbulence models rigorous; we present results for a set of eight Reynolds-averaged Navier–Stokes turbulence models. Even though the largest Reynolds number is approximately 5.5 times higher than in a similar DNS study we presented in 1997, the models have difficulties matching the DNS skin friction very closely even in the zero pressure gradient, which complicates their assessment. In the rest of the domain, the separation location per se is not particularly difficult to predict, and the most definite disagreement between DNS and models is near reattachment. Curiously, the better models tend to cluster together in their predictions of pressure and skin friction even when they deviate from the DNS, although their eddy-viscosity levels are widely different in the outer region near the bubble (or they do not rely on an eddy viscosity). Stratford’s square-root law is satisfied by the velocity profiles, both at separation and reattachment. The Reynolds-number range covers a factor of two, with the Reynolds number based on the extrapolated momentum thickness equal to approximately 1500 and 3000. This allows tentative estimates of the improvements that even higher values will bring to the model comparisons. The solutions are used to assess models through pressure, skin friction and other measures; the flow fields are also used to produce effective eddy-viscosity targets for the models, thus guiding turbulence-modelling work in each region of the flow." @default.
- W2804796609 created "2018-06-01" @default.
- W2804796609 creator A5049107546 @default.
- W2804796609 creator A5050028791 @default.
- W2804796609 creator A5059098475 @default.
- W2804796609 date "2018-05-17" @default.
- W2804796609 modified "2023-10-11" @default.
- W2804796609 title "Numerical study of turbulent separation bubbles with varying pressure gradient and Reynolds number" @default.
- W2804796609 cites W1610048812 @default.
- W2804796609 cites W1968097544 @default.
- W2804796609 cites W1968372207 @default.
- W2804796609 cites W1974097079 @default.
- W2804796609 cites W1987378671 @default.
- W2804796609 cites W1988502883 @default.
- W2804796609 cites W1993231725 @default.
- W2804796609 cites W1995907879 @default.
- W2804796609 cites W2008179361 @default.
- W2804796609 cites W2008252915 @default.
- W2804796609 cites W2012425952 @default.
- W2804796609 cites W2016958509 @default.
- W2804796609 cites W2020745406 @default.
- W2804796609 cites W2021525615 @default.
- W2804796609 cites W2036284914 @default.
- W2804796609 cites W2038130630 @default.
- W2804796609 cites W2044429986 @default.
- W2804796609 cites W2059954760 @default.
- W2804796609 cites W2064594683 @default.
- W2804796609 cites W2066654012 @default.
- W2804796609 cites W2072457484 @default.
- W2804796609 cites W2072469432 @default.
- W2804796609 cites W2077651848 @default.
- W2804796609 cites W2084137297 @default.
- W2804796609 cites W2084353086 @default.
- W2804796609 cites W2103937950 @default.
- W2804796609 cites W2110362798 @default.
- W2804796609 cites W2111003228 @default.
- W2804796609 cites W2113083095 @default.
- W2804796609 cites W2121125723 @default.
- W2804796609 cites W2131908956 @default.
- W2804796609 cites W2132482424 @default.
- W2804796609 cites W2138079557 @default.
- W2804796609 cites W2145357307 @default.
- W2804796609 cites W2155155203 @default.
- W2804796609 cites W2155565442 @default.
- W2804796609 cites W2156864491 @default.
- W2804796609 cites W2157960017 @default.
- W2804796609 cites W2160692199 @default.
- W2804796609 cites W2168384726 @default.
- W2804796609 cites W2233780765 @default.
- W2804796609 cites W2296467298 @default.
- W2804796609 cites W2345668738 @default.
- W2804796609 cites W2568933809 @default.
- W2804796609 cites W2740424642 @default.
- W2804796609 cites W2767986919 @default.
- W2804796609 cites W4240359823 @default.
- W2804796609 cites W4245037559 @default.
- W2804796609 cites W748861584 @default.
- W2804796609 cites W2091384683 @default.
- W2804796609 doi "https://doi.org/10.1017/jfm.2018.257" @default.
- W2804796609 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6907023" @default.
- W2804796609 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31831915" @default.
- W2804796609 hasPublicationYear "2018" @default.
- W2804796609 type Work @default.
- W2804796609 sameAs 2804796609 @default.
- W2804796609 citedByCount "59" @default.
- W2804796609 countsByYear W28047966092018 @default.
- W2804796609 countsByYear W28047966092019 @default.
- W2804796609 countsByYear W28047966092020 @default.
- W2804796609 countsByYear W28047966092021 @default.
- W2804796609 countsByYear W28047966092022 @default.
- W2804796609 countsByYear W28047966092023 @default.
- W2804796609 crossrefType "journal-article" @default.
- W2804796609 hasAuthorship W2804796609A5049107546 @default.
- W2804796609 hasAuthorship W2804796609A5050028791 @default.
- W2804796609 hasAuthorship W2804796609A5059098475 @default.
- W2804796609 hasBestOaLocation W28047966092 @default.
- W2804796609 hasConcept C121332964 @default.
- W2804796609 hasConcept C152846280 @default.
- W2804796609 hasConcept C15476950 @default.
- W2804796609 hasConcept C157915830 @default.
- W2804796609 hasConcept C182748727 @default.
- W2804796609 hasConcept C18533594 @default.
- W2804796609 hasConcept C189223162 @default.
- W2804796609 hasConcept C196558001 @default.
- W2804796609 hasConcept C204573209 @default.
- W2804796609 hasConcept C57879066 @default.
- W2804796609 hasConcept C77576233 @default.
- W2804796609 hasConcept C98156149 @default.
- W2804796609 hasConceptScore W2804796609C121332964 @default.
- W2804796609 hasConceptScore W2804796609C152846280 @default.
- W2804796609 hasConceptScore W2804796609C15476950 @default.
- W2804796609 hasConceptScore W2804796609C157915830 @default.
- W2804796609 hasConceptScore W2804796609C182748727 @default.
- W2804796609 hasConceptScore W2804796609C18533594 @default.
- W2804796609 hasConceptScore W2804796609C189223162 @default.
- W2804796609 hasConceptScore W2804796609C196558001 @default.
- W2804796609 hasConceptScore W2804796609C204573209 @default.
- W2804796609 hasConceptScore W2804796609C57879066 @default.