Matches in SemOpenAlex for { <https://semopenalex.org/work/W2804951847> ?p ?o ?g. }
- W2804951847 endingPage "2940" @default.
- W2804951847 startingPage "2927" @default.
- W2804951847 abstract "The explosive growth of multimedia data on the Internet makes it essential to develop innovative machine learning algorithms for practical applications especially where only a small number of labeled samples are available. Manifold regularized semi-supervised learning (MRSSL) thus received intensive attention recently because it successfully exploits the local structure of data distribution including both labeled and unlabeled samples to leverage the generalization ability of a learning model. Although there are many representative works in MRSSL, including Laplacian regularization (LapR) and Hessian regularization, how to explore and exploit the local geometry of data manifold is still a challenging problem. In this paper, we introduce a fully efficient approximation algorithm of graph <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>${p}$ </tex-math></inline-formula> -Laplacian, which significantly saving the computing cost. And then we propose <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>${p}$ </tex-math></inline-formula> -LapR (pLapR) to preserve the local geometry. Specifically, <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>${p}$ </tex-math></inline-formula> -Laplacian is a natural generalization of the standard graph Laplacian and provides convincing theoretical evidence to better preserve the local structure. We apply pLapR to support vector machines and kernel least squares and conduct the implementations for scene recognition. Extensive experiments on the Scene 67 dataset, Scene 15 dataset, and UC-Merced dataset validate the effectiveness of pLapR in comparison to the conventional manifold regularization methods." @default.
- W2804951847 created "2018-06-01" @default.
- W2804951847 creator A5009595085 @default.
- W2804951847 creator A5044959745 @default.
- W2804951847 creator A5067600725 @default.
- W2804951847 creator A5073642517 @default.
- W2804951847 creator A5078691114 @default.
- W2804951847 date "2019-08-01" @default.
- W2804951847 modified "2023-10-18" @default.
- W2804951847 title "$p$ -Laplacian Regularization for Scene Recognition" @default.
- W2804951847 cites W1512987215 @default.
- W2804951847 cites W1970847130 @default.
- W2804951847 cites W1977617632 @default.
- W2804951847 cites W1980038761 @default.
- W2804951847 cites W1983205198 @default.
- W2804951847 cites W1985583020 @default.
- W2804951847 cites W2006904655 @default.
- W2804951847 cites W2024082504 @default.
- W2804951847 cites W2027758045 @default.
- W2804951847 cites W2031489346 @default.
- W2804951847 cites W2096146461 @default.
- W2804951847 cites W2097703723 @default.
- W2804951847 cites W2108119513 @default.
- W2804951847 cites W2144719328 @default.
- W2804951847 cites W2150860957 @default.
- W2804951847 cites W2152161678 @default.
- W2804951847 cites W2162915993 @default.
- W2804951847 cites W2168584046 @default.
- W2804951847 cites W2204666881 @default.
- W2804951847 cites W2258484932 @default.
- W2804951847 cites W2310335681 @default.
- W2804951847 cites W2327049400 @default.
- W2804951847 cites W2471764118 @default.
- W2804951847 cites W2588534625 @default.
- W2804951847 cites W2605809234 @default.
- W2804951847 cites W2612114597 @default.
- W2804951847 cites W2726971391 @default.
- W2804951847 cites W2749439257 @default.
- W2804951847 cites W3098527277 @default.
- W2804951847 doi "https://doi.org/10.1109/tcyb.2018.2833843" @default.
- W2804951847 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29994326" @default.
- W2804951847 hasPublicationYear "2019" @default.
- W2804951847 type Work @default.
- W2804951847 sameAs 2804951847 @default.
- W2804951847 citedByCount "63" @default.
- W2804951847 countsByYear W28049518472018 @default.
- W2804951847 countsByYear W28049518472019 @default.
- W2804951847 countsByYear W28049518472020 @default.
- W2804951847 countsByYear W28049518472021 @default.
- W2804951847 countsByYear W28049518472022 @default.
- W2804951847 countsByYear W28049518472023 @default.
- W2804951847 crossrefType "journal-article" @default.
- W2804951847 hasAuthorship W2804951847A5009595085 @default.
- W2804951847 hasAuthorship W2804951847A5044959745 @default.
- W2804951847 hasAuthorship W2804951847A5067600725 @default.
- W2804951847 hasAuthorship W2804951847A5073642517 @default.
- W2804951847 hasAuthorship W2804951847A5078691114 @default.
- W2804951847 hasConcept C11413529 @default.
- W2804951847 hasConcept C115178988 @default.
- W2804951847 hasConcept C119857082 @default.
- W2804951847 hasConcept C127413603 @default.
- W2804951847 hasConcept C132525143 @default.
- W2804951847 hasConcept C134306372 @default.
- W2804951847 hasConcept C153083717 @default.
- W2804951847 hasConcept C154945302 @default.
- W2804951847 hasConcept C165696696 @default.
- W2804951847 hasConcept C165700671 @default.
- W2804951847 hasConcept C177148314 @default.
- W2804951847 hasConcept C203616005 @default.
- W2804951847 hasConcept C2776135515 @default.
- W2804951847 hasConcept C28826006 @default.
- W2804951847 hasConcept C33923547 @default.
- W2804951847 hasConcept C38652104 @default.
- W2804951847 hasConcept C41008148 @default.
- W2804951847 hasConcept C45357846 @default.
- W2804951847 hasConcept C529865628 @default.
- W2804951847 hasConcept C78519656 @default.
- W2804951847 hasConcept C80444323 @default.
- W2804951847 hasConcept C94375191 @default.
- W2804951847 hasConceptScore W2804951847C11413529 @default.
- W2804951847 hasConceptScore W2804951847C115178988 @default.
- W2804951847 hasConceptScore W2804951847C119857082 @default.
- W2804951847 hasConceptScore W2804951847C127413603 @default.
- W2804951847 hasConceptScore W2804951847C132525143 @default.
- W2804951847 hasConceptScore W2804951847C134306372 @default.
- W2804951847 hasConceptScore W2804951847C153083717 @default.
- W2804951847 hasConceptScore W2804951847C154945302 @default.
- W2804951847 hasConceptScore W2804951847C165696696 @default.
- W2804951847 hasConceptScore W2804951847C165700671 @default.
- W2804951847 hasConceptScore W2804951847C177148314 @default.
- W2804951847 hasConceptScore W2804951847C203616005 @default.
- W2804951847 hasConceptScore W2804951847C2776135515 @default.
- W2804951847 hasConceptScore W2804951847C28826006 @default.
- W2804951847 hasConceptScore W2804951847C33923547 @default.
- W2804951847 hasConceptScore W2804951847C38652104 @default.
- W2804951847 hasConceptScore W2804951847C41008148 @default.
- W2804951847 hasConceptScore W2804951847C45357846 @default.
- W2804951847 hasConceptScore W2804951847C529865628 @default.