Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805019413> ?p ?o ?g. }
- W2805019413 endingPage "10" @default.
- W2805019413 startingPage "1" @default.
- W2805019413 abstract "Deep generative models for graphs have recently achieved great successes in modeling and generating graphs for studying networks in biology, engineering, and social sciences. However, they are typically unconditioned generative models that have no control over the target graphs given a source graph. In this article, we propose a novel graph-translation-generative-adversarial-nets (GT-GAN) model that transforms the source graphs into their target output graphs. GT-GAN consists of a graph translator equipped with innovative graph convolution and deconvolution layers to learn the translation mapping considering both global and local features. A new conditional graph discriminator is proposed to classify the target graphs by conditioning on source graphs while training. Extensive experiments on multiple synthetic and real-world datasets in the domain of cybernetworks, the Internet of Things, and neuroscience demonstrate that the proposed GT-GAN model significantly outperforms other baseline methods in terms of both effectiveness and scalability. For instance, GT-GAN outperforms the classical state-of-the-art (SOTA) methods in functional connectivity (FC) prediction of brain networks by at least 32.5%." @default.
- W2805019413 created "2018-06-01" @default.
- W2805019413 creator A5011825081 @default.
- W2805019413 creator A5048756500 @default.
- W2805019413 creator A5090356888 @default.
- W2805019413 date "2022-01-01" @default.
- W2805019413 modified "2023-10-01" @default.
- W2805019413 title "Deep Graph Translation" @default.
- W2805019413 cites W1501856433 @default.
- W2805019413 cites W1901129140 @default.
- W2805019413 cites W1963871118 @default.
- W2805019413 cites W1992021819 @default.
- W2805019413 cites W2048324994 @default.
- W2805019413 cites W2084238990 @default.
- W2805019413 cites W2125389028 @default.
- W2805019413 cites W2146950091 @default.
- W2805019413 cites W2298992465 @default.
- W2805019413 cites W2406128552 @default.
- W2805019413 cites W2415243320 @default.
- W2805019413 cites W2519887557 @default.
- W2805019413 cites W2541678333 @default.
- W2805019413 cites W2601324753 @default.
- W2805019413 cites W2624431344 @default.
- W2805019413 cites W2766453196 @default.
- W2805019413 cites W2766527293 @default.
- W2805019413 cites W2767055464 @default.
- W2805019413 cites W2786103815 @default.
- W2805019413 cites W2786565076 @default.
- W2805019413 cites W2786722833 @default.
- W2805019413 cites W2788657021 @default.
- W2805019413 cites W2792402990 @default.
- W2805019413 cites W2796167946 @default.
- W2805019413 cites W2798749466 @default.
- W2805019413 cites W2921759594 @default.
- W2805019413 cites W2949888546 @default.
- W2805019413 cites W2949999304 @default.
- W2805019413 cites W2950898568 @default.
- W2805019413 cites W2951004968 @default.
- W2805019413 cites W2951101948 @default.
- W2805019413 cites W2951622387 @default.
- W2805019413 cites W2952254971 @default.
- W2805019413 cites W2962756421 @default.
- W2805019413 cites W2962793481 @default.
- W2805019413 cites W2963073614 @default.
- W2805019413 cites W2963676163 @default.
- W2805019413 cites W2963984147 @default.
- W2805019413 cites W2964108670 @default.
- W2805019413 cites W2964311892 @default.
- W2805019413 cites W2964321699 @default.
- W2805019413 cites W2965344674 @default.
- W2805019413 cites W3104097132 @default.
- W2805019413 doi "https://doi.org/10.1109/tnnls.2022.3144670" @default.
- W2805019413 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35298382" @default.
- W2805019413 hasPublicationYear "2022" @default.
- W2805019413 type Work @default.
- W2805019413 sameAs 2805019413 @default.
- W2805019413 citedByCount "24" @default.
- W2805019413 countsByYear W28050194132018 @default.
- W2805019413 countsByYear W28050194132019 @default.
- W2805019413 countsByYear W28050194132020 @default.
- W2805019413 countsByYear W28050194132021 @default.
- W2805019413 countsByYear W28050194132022 @default.
- W2805019413 countsByYear W28050194132023 @default.
- W2805019413 crossrefType "journal-article" @default.
- W2805019413 hasAuthorship W2805019413A5011825081 @default.
- W2805019413 hasAuthorship W2805019413A5048756500 @default.
- W2805019413 hasAuthorship W2805019413A5090356888 @default.
- W2805019413 hasConcept C104317684 @default.
- W2805019413 hasConcept C105580179 @default.
- W2805019413 hasConcept C108583219 @default.
- W2805019413 hasConcept C11413529 @default.
- W2805019413 hasConcept C132525143 @default.
- W2805019413 hasConcept C149364088 @default.
- W2805019413 hasConcept C154945302 @default.
- W2805019413 hasConcept C167966045 @default.
- W2805019413 hasConcept C185592680 @default.
- W2805019413 hasConcept C2779803651 @default.
- W2805019413 hasConcept C39890363 @default.
- W2805019413 hasConcept C41008148 @default.
- W2805019413 hasConcept C48044578 @default.
- W2805019413 hasConcept C55493867 @default.
- W2805019413 hasConcept C76155785 @default.
- W2805019413 hasConcept C77088390 @default.
- W2805019413 hasConcept C80444323 @default.
- W2805019413 hasConcept C94915269 @default.
- W2805019413 hasConceptScore W2805019413C104317684 @default.
- W2805019413 hasConceptScore W2805019413C105580179 @default.
- W2805019413 hasConceptScore W2805019413C108583219 @default.
- W2805019413 hasConceptScore W2805019413C11413529 @default.
- W2805019413 hasConceptScore W2805019413C132525143 @default.
- W2805019413 hasConceptScore W2805019413C149364088 @default.
- W2805019413 hasConceptScore W2805019413C154945302 @default.
- W2805019413 hasConceptScore W2805019413C167966045 @default.
- W2805019413 hasConceptScore W2805019413C185592680 @default.
- W2805019413 hasConceptScore W2805019413C2779803651 @default.
- W2805019413 hasConceptScore W2805019413C39890363 @default.
- W2805019413 hasConceptScore W2805019413C41008148 @default.
- W2805019413 hasConceptScore W2805019413C48044578 @default.