Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805097588> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2805097588 endingPage "020502" @default.
- W2805097588 startingPage "020502" @default.
- W2805097588 abstract "In order to reduce errors caused by human factors to identify the linear region, we propose a new method based on the fuzzy C-means clustering for calculating the maximum Lyapunov exponent from small data. The method based on the changing characteristic of divergence index curve is used to identify the linear region. Firstly, the divergence index data are calculated from the small data algorithm for the given chaotic time series. Secondly, the fuzzy C-means clustering method is used for dividing the data into two classes (unsaturated and saturated data), and the unsaturated data are retained. Thirdly, the retained data are divided by the same clustering method into three classes (positive fluctuation data, zero fluctuation data and negative fluctuation data), and the zero fluctuation data are retained. Fourthly, the 3$ criterion is used for excluding gross errors to retain the valid from the selected data. Finally, the regression analysis and statistical test are used to identify the linear region from the valid data. The effectiveness of the proposed method can be demonstrated by the famous chaotic systems of Logistic and Henon. The calculated results are closr to the theoretical values than the subjective method. Experimental results show that the proposed new approach is easier to operate, more efficient and more accurate as compared with the subjective recognition. But this method has its own shortcomings. (1) As the new method is verified by the simulation experiment, there exists no strict mathematical proof. (2) Since the difference algorithm is used in this new method, it will miss some detailed information in some cases. (3) The calculation accuracy still needs to be improved, so this method only serves as a reference to detect the linear region, it can not be applied to high precision engineering field. Considering the deficiencies of the new method, we will make further research to improve the calculation method for maximum Lyapunovexponent, so as to make it solve the real-time problem of the signal detection, and find the accurate location of abrupt climate change in the field of meteorology, to provide accurate satellite launch safety period in the field of space weather and other aspects. In short, studying the largest Lyapunov exponent from chaotic time series has a wide application prospect and practical significance." @default.
- W2805097588 created "2018-06-13" @default.
- W2805097588 creator A5015285865 @default.
- W2805097588 creator A5039084645 @default.
- W2805097588 creator A5079315017 @default.
- W2805097588 creator A5091145763 @default.
- W2805097588 date "2016-01-01" @default.
- W2805097588 modified "2023-09-26" @default.
- W2805097588 title "A novel method based on the fuzzy C-means clustering to calculate the maximal Lyapunov exponent from small data" @default.
- W2805097588 cites W1775199434 @default.
- W2805097588 cites W1983754074 @default.
- W2805097588 cites W1984391316 @default.
- W2805097588 cites W1995725546 @default.
- W2805097588 cites W2003174572 @default.
- W2805097588 cites W2003499957 @default.
- W2805097588 cites W2011430131 @default.
- W2805097588 cites W2046732414 @default.
- W2805097588 cites W2047286795 @default.
- W2805097588 cites W2085793407 @default.
- W2805097588 cites W2102892532 @default.
- W2805097588 cites W2114670145 @default.
- W2805097588 cites W2121065739 @default.
- W2805097588 cites W2124428761 @default.
- W2805097588 cites W2138037653 @default.
- W2805097588 cites W2152254020 @default.
- W2805097588 cites W4253610201 @default.
- W2805097588 cites W89505777 @default.
- W2805097588 doi "https://doi.org/10.7498/aps.65.020502" @default.
- W2805097588 hasPublicationYear "2016" @default.
- W2805097588 type Work @default.
- W2805097588 sameAs 2805097588 @default.
- W2805097588 citedByCount "7" @default.
- W2805097588 countsByYear W28050975882018 @default.
- W2805097588 countsByYear W28050975882019 @default.
- W2805097588 countsByYear W28050975882020 @default.
- W2805097588 countsByYear W28050975882021 @default.
- W2805097588 countsByYear W28050975882023 @default.
- W2805097588 crossrefType "journal-article" @default.
- W2805097588 hasAuthorship W2805097588A5015285865 @default.
- W2805097588 hasAuthorship W2805097588A5039084645 @default.
- W2805097588 hasAuthorship W2805097588A5079315017 @default.
- W2805097588 hasAuthorship W2805097588A5091145763 @default.
- W2805097588 hasBestOaLocation W28050975881 @default.
- W2805097588 hasConcept C11413529 @default.
- W2805097588 hasConcept C124101348 @default.
- W2805097588 hasConcept C138885662 @default.
- W2805097588 hasConcept C143724316 @default.
- W2805097588 hasConcept C151730666 @default.
- W2805097588 hasConcept C154945302 @default.
- W2805097588 hasConcept C191544260 @default.
- W2805097588 hasConcept C207390915 @default.
- W2805097588 hasConcept C2777052490 @default.
- W2805097588 hasConcept C28826006 @default.
- W2805097588 hasConcept C33923547 @default.
- W2805097588 hasConcept C41008148 @default.
- W2805097588 hasConcept C41895202 @default.
- W2805097588 hasConcept C73555534 @default.
- W2805097588 hasConcept C86803240 @default.
- W2805097588 hasConceptScore W2805097588C11413529 @default.
- W2805097588 hasConceptScore W2805097588C124101348 @default.
- W2805097588 hasConceptScore W2805097588C138885662 @default.
- W2805097588 hasConceptScore W2805097588C143724316 @default.
- W2805097588 hasConceptScore W2805097588C151730666 @default.
- W2805097588 hasConceptScore W2805097588C154945302 @default.
- W2805097588 hasConceptScore W2805097588C191544260 @default.
- W2805097588 hasConceptScore W2805097588C207390915 @default.
- W2805097588 hasConceptScore W2805097588C2777052490 @default.
- W2805097588 hasConceptScore W2805097588C28826006 @default.
- W2805097588 hasConceptScore W2805097588C33923547 @default.
- W2805097588 hasConceptScore W2805097588C41008148 @default.
- W2805097588 hasConceptScore W2805097588C41895202 @default.
- W2805097588 hasConceptScore W2805097588C73555534 @default.
- W2805097588 hasConceptScore W2805097588C86803240 @default.
- W2805097588 hasIssue "2" @default.
- W2805097588 hasLocation W28050975881 @default.
- W2805097588 hasOpenAccess W2805097588 @default.
- W2805097588 hasPrimaryLocation W28050975881 @default.
- W2805097588 hasRelatedWork W2006009981 @default.
- W2805097588 hasRelatedWork W2017310126 @default.
- W2805097588 hasRelatedWork W2070080144 @default.
- W2805097588 hasRelatedWork W2124586514 @default.
- W2805097588 hasRelatedWork W2353410451 @default.
- W2805097588 hasRelatedWork W2365327494 @default.
- W2805097588 hasRelatedWork W2369925472 @default.
- W2805097588 hasRelatedWork W2382605337 @default.
- W2805097588 hasRelatedWork W2507191398 @default.
- W2805097588 hasRelatedWork W2916421360 @default.
- W2805097588 hasVolume "65" @default.
- W2805097588 isParatext "false" @default.
- W2805097588 isRetracted "false" @default.
- W2805097588 magId "2805097588" @default.
- W2805097588 workType "article" @default.