Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805287130> ?p ?o ?g. }
- W2805287130 endingPage "96" @default.
- W2805287130 startingPage "78" @default.
- W2805287130 abstract "Next-Generation Sequencing & Molecular Diagnostics Genome function, ChIP-Seq and personalized diagnosticsChandra S Pareek & Andrzej TretynChandra S PareekChandra Shekhar Pareek is Professor and Chair of Functional Genomics Laboratory and Group Leader of Translational Research Unit of Interdisciplinary Centre for Modern Technology, Nicolaus Copernicus University, Toruń, Poland. His research interests focus on development of immune-relevant gene markers, genome scan procedures and DNA pooling for mapping complex disease loci, massively parallel sequencing, integration of functional genomic towards genome-wide transcriptome analysis and interdisciplinary translational research in genomics.Search for more papers by this author & Andrzej TretynAndrzej Tretyn is Rector Magnificus (2012–2016) and Professor and Chair of Plant Physiology and Biotechnology of Nicolaus Copernicus University, Toruń, Poland. His research interests focus on cytophysiology, phytochrome, photomorphogenesis and calcium signaling in plants. His current research areas involve metagenomics, gene expression profiles in different digestive tract neoplasm, diagnostic test for breast cancer. He is a grantee of Wageningen Agricultural University (1988), Alexander von Humboldt Foundation (1989–1991) and Japanese Society for the Promotion of Science (2004).Search for more papers by this authorPublished Online:13 Feb 2013https://doi.org/10.2217/ebo.12.225AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinkedInReddit View chapterAbstract: This chapter begins with a brief introduction of genome function as summarized in Figure 5.1, followed by an overview of recent developments and highlights on chromatin immunoprecipitation sequencing (ChIP-Seq) technology, particularly recent progresses in the development of computational tools for ChIP-Seq data analysis and its potential applications namely genome-wide identification of histone modifications locations, mapping of transcription factor (TF) binding sites, epigenetic profiling, motif discovery, nucleosome positioning, and prediction of TF regulatory networks. Finally in context to NGS technologies, recent progresses in the field of personalized diagnosis for complex human diseases are illustrated. References1 Hemmerich P , Schmiedeberg L , Diekmann S . Dynamic as well as stable protein interactions contribute to genome function and maintenance . Chromosome Res. 19 (1) , 131 – 151 (2011) . Crossref, Medline, CAS, Google Scholar2 Misteli T . Beyond the sequence: cellular organization of genome function . Cell 128 (4) , 787 – 800 (2007) . Crossref, Medline, CAS, Google Scholar3 Berger SL . The complex language of chromatin regulation during transcription . Nature 447 (7143) , 407 – 412 (2007) . Crossref, Medline, CAS, Google Scholar4 Misteli T . Physiological importance of RNA and protein mobility in the cell nucleus . Histochem. Cell Biol. 129 (1) , 5 – 11 (2008) . Crossref, Medline, CAS, Google Scholar5 Deal RB , Henikoff S . Capturing the dynamic epigenome . Genome Biol. 11 (10) , 218 (2010) . Crossref, Medline, CAS, Google Scholar6 Schones DE , Cui K , Cuddapah S et al. Dynamic regulation of nucleosome positioning in the human genome . Cell 132 , 887 – 898 (2008) . Crossref, Medline, CAS, Google Scholar7 Li B , Carey M , Workman JL . The role of chromatin during transcription . Cell 128 (4) , 707 – 719 (2007) . Crossref, Medline, CAS, Google Scholar8 Farnham PJ . Insights from genomic profiling of transcription factors . Nat. Rev. Genet. 10 (9) , 605 – 616 (2009) . Crossref, Medline, CAS, Google Scholar9 Buck MJ , Lieb JD . ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments . Genomics 83 (3) , 349 – 360 (2004) . Crossref, Medline, CAS, Google Scholar10 Fullwood MJ , Wei CL , Liu ET , Ruan Y . Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses . Genome Res. 19 (4) , 521 – 532 (2009) . Crossref, Medline, CAS, Google Scholar11 Johnson DS , Mortazavi A , Myers RM , Wold B . Genomewide mapping of in vivo protein-DNA interactions . Science 316 (5830) , 1497 – 1502 (2007) . Crossref, Medline, CAS, Google Scholar12 Pareek CS , Smoczynski R , Tretyn A . Sequencing technologies and genome sequencing . J. Appl. Genet. 52 (4) , 413 – 435 (2011) . Crossref, Medline, CAS, Google Scholar13 Li XY , MacArthur S , Bourgon R et al. Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm . PLoS Biol. 6 (2) , e27 (2008) . Crossref, Medline, Google Scholar14 Ye T , Krebs AR , Choukrallah MA et al. seqMINER: an integrated ChIP-seq data interpretation platform . Nucleic Acids Res. 39 (6) , e35 (2011) . Crossref, Medline, CAS, Google Scholar15 Krebs A , Frontini M , Tora L . GPAT: retrieval of genomic annotation from large genomic position datasets . BMC Bioinformatics 15 (9) , 533 (2008) . Crossref, Google Scholar16 Hollenhorst PC , Chandler KJ , Poulsen RL , Johnson WE , Speck NA , Graves BJ . DNA specificity determinants associate with distinct transcription factor functions . PLoS Genet. 5 (12) , e1000778 (2009) . Crossref, Medline, Google Scholar17 Elemento O , Slonim N , Tavazoie S . A universal framework for regulatory element discovery across all genomes and data types . Mol. Cell. 28 (2) , 337 – 350 (2007) . Crossref, Medline, CAS, Google Scholar18 Siepel A , Bejerano G , Pedersen JS et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes . Genome Res. 15 (8) , 1034 – 1050 (2005) . Crossref, Medline, CAS, Google Scholar19 de Hoon MJ , Imoto S , Nolan J , Miyano S . Open source clustering software . Bioinformatics 20 (9) , 1453 – 1454 (2004) . Crossref, Medline, CAS, Google Scholar20 Giannopoulou EG , Elemento O . An integrated ChIP-seq analysis platform with customizable workflows . BMC Bioinformatics 12 , 277 (2011) . Crossref, Medline, Google Scholar21 Raney BJ , Cline MS , Rosenbloom KR et al. ENCODE whole-genome data in the UCSC genome browser (2011 update) . Nucleic Acids Res. 39 (Database issue) , D871 – D875 (2011) . Crossref, Medline, CAS, Google Scholar22 Elnitski L , Jin VX , Farnham PJ , Jones SJ . Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques . Genome Res. 16 (12) , 1455 – 1464 (2006) . Crossref, Medline, CAS, Google Scholar23 Massie CE , Mills IG . ChIPping away at gene regulation . EMBO Rep. 9 (4) , 337 – 343 (2008) . Crossref, Medline, CAS, Google Scholar24 Barrera LO , Li Z , Smith AD et al. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs . Genome Res. 18 (1) , 46 – 59 (2008) . Crossref, Medline, CAS, Google Scholar25 Kharchenko PV , Tolstorukov MY , Park PJ . Design and analysis of ChIP-seq experiments for DNA-binding proteins . Nat. Biotechnol. 26 (12) , 1351 – 1359 (2008) . Crossref, Medline, CAS, Google Scholar26 Zhang Y , Liu T , Meyer CA et al. Model-based analysis of ChIP-Seq (MACS) . Genome Biol. 9 (9) , R137 (2008) . Crossref, Medline, Google Scholar27 Barski A , Cuddapah S , Cui K et al. High-resolution profiling of histone methylations in the human genome . Cell 129 (4) , 823 – 837 (2007) . Crossref, Medline, CAS, Google Scholar28 Wang Z , Zang C , Rosenfeld JA et al. Combinatorial patterns of histone acetylations and methylations in the human genome . Nat. Genet. 40 (7) , 897 – 903 (2008) . Crossref, Medline, CAS, Google Scholar29 Mikkelsen TS , Ku M , Jaffe DB et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells . Nature 448 (7153) , 553 – 560 (2007) . Crossref, Medline, CAS, Google Scholar30 Robertson AG , Bilenky M , Tam A et al. Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding . Genome Res. 18 (12) , 1906 – 1917 (2008) . Crossref, Medline, CAS, Google Scholar31 Hoffman BG , Jones SJ . Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing . J. Endocrinol. 201 (1) , 1 – 13 (2009) . Crossref, Medline, CAS, Google Scholar32 Carlson B . Seeking a Coding Solution For Molecular Tests: Managing the estimated 1,700 molecular tests now on the market is impossible without a unique CPT code for each test. What’s at stake? The future of personalized medicine . Biotechnol. Healthc. 7 (4) , 16 – 20 (2010) . Medline, Google Scholar33 Chuang EY . Translational cancer research - message from the editor-in-chief . Transl. Canc. Res. 88 (1) , 1 (2012) . Google Scholar34 Richmond TD . The current status and future potential of personalized diagnostics: streamlining a customized process . Biotechnol. Annu. Rev. 14 , 411 – 422 (2008) . Crossref, Medline, Google Scholar35 Quinn B . Personalized diagnostics: the struggle for position . Personalized Medicine 7 , 263 – 273 (2010) . Link, Google Scholar36 Mardis ER . The $1,000 genome, the $100,000 analysis? Genome Med. 2 (11) , 84 (2010) . Crossref, Medline, Google Scholar37 Taylor KH , Kramer RS , Davis JW et al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing . Cancer Res. 67 (18) , 8511 – 8518 (2007) . Crossref, Medline, CAS, Google Scholar38 Macdermed DM , Uribe-Bruce L . Diverse perspectives on the current state of genomic medicine: has the revolution begun? Genome Med. 3 (5) , 27 (2011) . Crossref, Medline, Google Scholar39 Hoang SA , Xu X , Bekiranov S . Quantification of histone modification ChIP-seq enrichment for data mining and machine learning applications . BMC Res. Notes 4 , 288 (2011) . Crossref, Medline, CAS, Google Scholar40 Han Z , Tian L , Pécot T , Huang T , Machiraju R , Huang K . A signal processing approach for enriched region detection in RNA polymerase IIChIP-seq data . BMC Bioinformatics 13 (Suppl. 2) , S2 (2012) . Crossref, Medline, CAS, Google Scholar41 Fejes AP , Robertson G , Bilenky M , Varhol R , Bainbridge M , Jones SJM . FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology . Bioinformatics 24 (15) , 1729 – 1730 (2008) . Crossref, Medline, CAS, Google Scholar42 Mercier E , Droit A , Li L , Robertson G , Zhang X , Gottardo R . An integrated pipeline for the genome-wide analysis of transcription factor binding Sites from ChIP-Seq . PLoS ONE 6 (2) , e16432 (2011) . Crossref, Medline, CAS, Google Scholar43 Kaspi A , Ziemann M , Rafehi H , Lazarus R , El-Osta A . A pipeline for the identification and characterization of chromatin modifications derived from ChIP-Seq datasets . Biochimie 94 (11) , 2353 – 2359 (2012) . Crossref, Medline, CAS, Google Scholar44 Bardet AF , He Q , Zeitlinger J , Stark A . A computational pipeline for comparative ChIP-seq analyses . Nat. Protocol 7 (1) , 45 – 61 (2011) . Crossref, Medline, Google Scholar45 Barozzi I , Termanini A , Minucci S , Gioacchino N . Fish the ChIPs: a pipeline for automated genomic annotation of ChIP-Seq data . Biol. Direct. 6 , 51 (2011) . Crossref, Medline, Google Scholar46 Salmon-Divon M , Dvinge H , Tammoja K , Bertone P . PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci . BMC Bioinformatics 11 , 415 (2010) . Crossref, Medline, Google Scholar47 Zhu LJ , Gazin C , Lawson ND , Pagès H , LinSM, Lapointe DS , Green MR . ChIPpeakAnno: a bioconductor package to annotate ChIP-seq and ChIP-chip data . BMC Bioinformatics 11 , 237 (2010) . Crossref, Medline, Google Scholar48 Shin H , Liu T , Manrai AK , Liu XS . CEAS: cis-regulatory element annotation system . Bioinformatics 25 (19) , 2605 – 2606 (2009) . Crossref, Medline, CAS, Google Scholar49 Blahnik KR , Dou L , O’Geen H et al. Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data . Nucleic Acids Res. 38 (3) , e13 (2010) . Crossref, Medline, Google Scholar50 Elo LL , Kallio A , Laajala TD , Hawkins RD , Korpelainen E , Aittokallio T . Optimized detection of transcription factor-binding sites in ChIP-seq experiments . Nucleic Acids Res. 40 (1) , e1 (2012) . Crossref, Medline, CAS, Google Scholar51 Hower V , Evans S , Pachter L . Shape-based peak identification for ChIP-Seq . BMC Bioinformatics 12 , 15 (2011) . Crossref, Medline, Google Scholar52 Qin ZS , Yu J , Shen J , et al. HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data . BMC Bioinformatics 11 , 369 (2010) . Crossref, Medline, Google Scholar53 Diaz A , Park K , Lim DA , Song JS . Normalization, bias correction, and peak calling for ChIP-seq . Stat. Appl. Genet. Mol. Biol. 11 (3) , Article 9 (2012) . Medline, Google Scholar54 Micsinai M , Parisi F , Strino F , Asp P , Dynlacht BD , Kluger Y . Picking ChIP-seq peak detectors for analyzing chromatin modification experiments . Nucleic Acids Res. 40 (9) , e70 (2012) . Crossref, Medline, CAS, Google Scholar55 Taslim C , Huang K , Huang T , Lin S . Analyzing ChIP-seq data: preprocessing, normalization, differential identification, and binding pattern characterization . Methods Mol. Biol. 802 , 275 – 291 (2012) . Crossref, Medline, CAS, Google Scholar56 Malone BM , Tan F , Bridges SM , Peng Z . Comparison of four ChIP-Seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data . PLoS ONE 6 (9) , e25260 (2011) . Crossref, Medline, CAS, Google Scholar57 Wu S , Wang J , Zhao W , Pounds S , Cheng C . ChIP-PaM: an algorithm to identify protein-DNA interaction using ChIP-Seq data . Theor. Biol. Med. Model. 7 , 18 (2010) . Crossref, Medline, Google Scholar58 Whitington T , Frith MC , Johnson J , Bailey TL . Inferring transcription factor complexes from ChIP-seq data . Nucleic Acids Res. 39 (15) , e98 (2011) . Crossref, Medline, CAS, Google Scholar59 Hu M , Yu J , Taylor JMG , Chinnaiyan AM , Qin ZS . On the detection and refinement of transcription factor binding sites using ChIP-Seq data . Nucleic Acids Res. 38 (7) , 2154 – 2167 (2010) . Crossref, Medline, CAS, Google Scholar60 Day DS , Luquette LJ , Park PJ , Kharchenko PV . Estimating enrichment of repetitive elements from high-throughput sequence data . Genom. Biol. 11 (6) , R69 (2010) . Crossref, Medline, Google Scholar61 Zang C , Schones DE , Zeng C , Cui K , Zhao K , Peng W . A clustering approach for identification of enriched domains from histone modificationChIP-Seq data . Bioinformatics 25 (15) , 1952 – 1958 (2009) . Crossref, Medline, CAS, Google Scholar62 Feng J , Liu T , Zhang Y . Using MACS to identify peaks from ChIP-Seq data . Curr. Protoc. Bioinformatics Chapter 2 , Unit 2.14 (2011) . Crossref, Medline, Google Scholar63 Brusslan JA , Rus Alvarez-Canterbury AM , Nair NU , Rice JC , Hitchler MJ , Pellegrini M . Genome-wide evaluation of histone methylation changes associated with leaf senescence in Arabidopsis . PLoS ONE 7 (3) , e33151 (2012) . Crossref, Medline, CAS, Google Scholar64 Dudziec E , Gogol-Döring A , Cookson V , Chen W , Catto J . Integrated epigenome profiling of repressive histone modifications, DNA methylation and gene expression in normal and malignant urothelial cells . PLoS ONE 7 (3) , e32750 (2012) . Crossref, Medline, CAS, Google Scholar65 Yin H , Sweeney S , Raha D , Snyder M , Lin H . A high-resolution whole-genome map of key chromatin modifications in the adult Drosophila melanogaster . PLoS Genet. 7 (12) , e1002380 (2011) . Crossref, Medline, CAS, Google Scholar66 Pirola L , Balcerczyk A , Tothill RW et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells . Genome Res. 21 (10) , 1601 – 1615 (2011) . Crossref, Medline, CAS, Google Scholar67 Young MD , Willson TA , Wakefield MJ et al. ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity . Nucleic Acids Res. 39 (17) , 7415 – 7427 (2011) . Crossref, Medline, CAS, Google Scholar68 Song Q , Smith AD . Identifying dispersed epigenomic domains from ChIP-Seq data . Bioinformatics 27 (6) , 870 – 871 (2011) . Crossref, Medline, CAS, Google Scholar69 Rye M , Sætrom P , Håndstad T , Drabløs F . Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements . BMC Biol. 9 , 80 (2011) . Crossref, Medline, CAS, Google Scholar70 Cheng C , Shou C , Yip KY , Gerstein MB . Genome-wide analysis of chromatin features identifies histone modification sensitive and insensitive yeast transcription factors . Genome Biol. 12 (11) , R111 (2011) . Crossref, Medline, CAS, Google Scholar71 Beck D , Brandl MB , Boelen L , Unnikrishnan A , Pimanda JE , Wong JW . Signal analysis for genome-wide maps of histone modifications measured by ChIP-seq . Bioinformatics 28 (8) , 1062 – 1069 (2012) . Crossref, Medline, CAS, Google Scholar72 Ferguson JP , Cho JH , Zhao H . A new approach for the joint analysis of multiple ChIP-seq libraries with application to histone modification . Stat. Appl. Genet. Mol. Biol. 11 (3) , Article 1 (2012) . Medline, Google Scholar73 Perna D , Fagà G , Verrecchia A et al. Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts . Oncogene 31 (13) , 1695 – 1709 (2012) . Crossref, Medline, CAS, Google Scholar74 Kennedy BA , Deatherage DE , Gu F et al. ChIP-seq defined genome-wide map of TGFβ/SMAD4 targets: implications with clinical outcome of ovarian cancer . PLoS ONE 6 (7) , e22606 (2011) . Crossref, Medline, CAS, Google Scholar75 Tell R , Wang QT , Blunier A , Benya RV . Identification of ChIP-seq mapped targets of HP1β due to bombesin/GRP receptor activation . Clin. Epigenetics 2 (2) , 331 – 338 (2011) . Crossref, Medline, CAS, Google Scholar76 Zhang Z , Pugh BF . High-resolution genome-wide mapping of the primary structure of chromatin . Cell 144 (2) , 175 – 186 (2011) . Crossref, Medline, CAS, Google Scholar77 Coarfa C , Yu F , Miller CA , Chen Z , Harris RA , Milosavljevic A . Pash 3.0: a versatile software package for read mapping and integrative analysis of genomic and epigenomic variation using massively parallel DNA sequencing . BMC Bioinformatics 11 , 572 (2010) . Crossref, Medline, Google Scholar78 Lun DS , Sherrid A , Weiner B , Sherman DR , Galagan JE . A blind deconvolution approach to high-resolution mapping of transcription factor binding sites from ChIP-seq data . Genome Biol. 10 (12) , R142 (2009) . Crossref, Medline, Google Scholar79 Schödel J , Oikonomopoulos S , Ragoussis J , Pugh CW , Ratcliffe PJ , Mole DR . High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq . Blood 117 (23) , e207 – 17 (2011) . Crossref, Medline, CAS, Google Scholar80 Gomah ME , Turley JP , Lu H , Jones D . Modeling complex workflow in molecular diagnostics: design specifications of laboratory software for support of personalized medicine . J. Mol. Diagn. 12 (1) , 51 – 57 (2010) . Crossref, Medline, Google Scholar81 Louca S . Personalized medicine – a tailored health care system: challenges and opportunities . Croat. Med. J. 53 (3) , 211 – 213 (2012) . Crossref, Medline, Google Scholar82 Nair SR . Personalized medicine: striding from genes to medicines . Perspect Clin. Res. 1 (4) , 146 – 150 (2010) . Crossref, Medline, Google Scholar83 Leary RJ , Kinde I , Diehl F et al. Development of personalized tumor biomarkers using massively parallel sequencing . Sci. Transl. Med. 2 (20) , 20ra14 (2010) . Crossref, Medline, Google Scholar84 Boguski MS , Arnaout R , Hill C . Customized care 2020: how medical sequencing and network biology will enable personalized medicine . F1000 Biol. Rep. 1 , 73 (2009) . Crossref, Medline, Google Scholar85 Végvári A , Welinder C , Lindberg H , Fehniger TE , Marko-Varga G . Biobank resources for future patient care: developments, principles and concepts . J. Clin. Bioinforma. 1 (1) , 24 (2011) . Crossref, Medline, Google ScholarFiguresReferencesRelatedDetails Next-Generation Sequencing & Molecular DiagnosticsMetrics Downloaded 19 times History Published online 13 February 2013 Published in print February 2013 Information© Future Medicine Ltd© Future Medicine LtdPDF download" @default.
- W2805287130 created "2018-06-13" @default.
- W2805287130 creator A5052209564 @default.
- W2805287130 creator A5080341246 @default.
- W2805287130 date "2013-02-01" @default.
- W2805287130 modified "2023-09-26" @default.
- W2805287130 title "Genome function, ChIP-Seq and personalized diagnostics" @default.
- W2805287130 cites W1557721925 @default.
- W2805287130 cites W1585888846 @default.
- W2805287130 cites W19252497 @default.
- W2805287130 cites W1963553964 @default.
- W2805287130 cites W1967163877 @default.
- W2805287130 cites W1967197633 @default.
- W2805287130 cites W1969734439 @default.
- W2805287130 cites W1972944037 @default.
- W2805287130 cites W1978008111 @default.
- W2805287130 cites W1979946545 @default.
- W2805287130 cites W1987659545 @default.
- W2805287130 cites W1990558912 @default.
- W2805287130 cites W1994582030 @default.
- W2805287130 cites W1997639391 @default.
- W2805287130 cites W2001554877 @default.
- W2805287130 cites W2005895632 @default.
- W2805287130 cites W2006329620 @default.
- W2805287130 cites W2007080030 @default.
- W2805287130 cites W2008535448 @default.
- W2805287130 cites W2008814792 @default.
- W2805287130 cites W2009591449 @default.
- W2805287130 cites W2011905648 @default.
- W2805287130 cites W2012254260 @default.
- W2805287130 cites W2015416439 @default.
- W2805287130 cites W2016202595 @default.
- W2805287130 cites W2017840637 @default.
- W2805287130 cites W2019136439 @default.
- W2805287130 cites W2032627213 @default.
- W2805287130 cites W2036853573 @default.
- W2805287130 cites W2041994172 @default.
- W2805287130 cites W2042210471 @default.
- W2805287130 cites W2047255063 @default.
- W2805287130 cites W2048442183 @default.
- W2805287130 cites W2049656505 @default.
- W2805287130 cites W2050057383 @default.
- W2805287130 cites W2050151193 @default.
- W2805287130 cites W2050515300 @default.
- W2805287130 cites W2051039710 @default.
- W2805287130 cites W2052770715 @default.
- W2805287130 cites W2055303035 @default.
- W2805287130 cites W2062533676 @default.
- W2805287130 cites W2063382533 @default.
- W2805287130 cites W2064730301 @default.
- W2805287130 cites W2071042066 @default.
- W2805287130 cites W2072152932 @default.
- W2805287130 cites W2072537259 @default.
- W2805287130 cites W2073230804 @default.
- W2805287130 cites W2080621653 @default.
- W2805287130 cites W2082887122 @default.
- W2805287130 cites W2083245183 @default.
- W2805287130 cites W2083457841 @default.
- W2805287130 cites W2084784708 @default.
- W2805287130 cites W2086376086 @default.
- W2805287130 cites W2089689396 @default.
- W2805287130 cites W2098549100 @default.
- W2805287130 cites W2100310273 @default.
- W2805287130 cites W2100863097 @default.
- W2805287130 cites W2101384205 @default.
- W2805287130 cites W2101500536 @default.
- W2805287130 cites W2102904139 @default.
- W2805287130 cites W2108834755 @default.
- W2805287130 cites W2112717966 @default.
- W2805287130 cites W2112912201 @default.
- W2805287130 cites W2115137176 @default.
- W2805287130 cites W2117216273 @default.
- W2805287130 cites W2121967239 @default.
- W2805287130 cites W2122056961 @default.
- W2805287130 cites W2122699308 @default.
- W2805287130 cites W2123460634 @default.
- W2805287130 cites W2127340110 @default.
- W2805287130 cites W2127600515 @default.
- W2805287130 cites W2129795133 @default.
- W2805287130 cites W2133036743 @default.
- W2805287130 cites W2133130714 @default.
- W2805287130 cites W2133452708 @default.
- W2805287130 cites W2136575984 @default.
- W2805287130 cites W2139507488 @default.
- W2805287130 cites W2141222038 @default.
- W2805287130 cites W2142136518 @default.
- W2805287130 cites W2145191876 @default.
- W2805287130 cites W2145781386 @default.
- W2805287130 cites W2146648681 @default.
- W2805287130 cites W2147178798 @default.
- W2805287130 cites W2147566730 @default.
- W2805287130 cites W2147794131 @default.
- W2805287130 cites W2149627698 @default.
- W2805287130 cites W2149973207 @default.
- W2805287130 cites W2150757282 @default.
- W2805287130 cites W2153562609 @default.
- W2805287130 cites W2158272128 @default.
- W2805287130 cites W2158670138 @default.