Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805320554> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2805320554 endingPage "59" @default.
- W2805320554 startingPage "45" @default.
- W2805320554 abstract "An important challenge for Machine Learning (ML) methods such as the Support Vector Machine (SVM), and others, is the selection of the structure of ML models for given data. This paper shows that the abilities of the pure analytical ML methods to address this challenge are limited. It is due to the fundamental nature of the ML methods, which rely on the available training data, which can result in overgeneralized or overfitted model. In the proposed visual analytics approach, domain experts are put into the “driving seat” of the ML model development to control the model overgeneralization and overfitting. In this approach, domain experts work interactively with multidimensional data, and the ML data classification models, presented in the lossless reversible visualizations. This paper shows that it enhances the ML classification models, and decreases the use of external and irrelevant-to-the-domain assumptions in the ML models." @default.
- W2805320554 created "2018-06-13" @default.
- W2805320554 creator A5052890418 @default.
- W2805320554 creator A5089775223 @default.
- W2805320554 date "2018-01-01" @default.
- W2805320554 modified "2023-09-23" @default.
- W2805320554 title "Reversible Data Visualization to Support Machine Learning" @default.
- W2805320554 cites W1511881534 @default.
- W2805320554 cites W1980801609 @default.
- W2805320554 cites W2026319679 @default.
- W2805320554 cites W2038040754 @default.
- W2805320554 cites W2233553616 @default.
- W2805320554 cites W2778562739 @default.
- W2805320554 cites W2790435797 @default.
- W2805320554 cites W2807125113 @default.
- W2805320554 cites W568124517 @default.
- W2805320554 doi "https://doi.org/10.1007/978-3-319-92043-6_4" @default.
- W2805320554 hasPublicationYear "2018" @default.
- W2805320554 type Work @default.
- W2805320554 sameAs 2805320554 @default.
- W2805320554 citedByCount "6" @default.
- W2805320554 countsByYear W28053205542019 @default.
- W2805320554 countsByYear W28053205542020 @default.
- W2805320554 countsByYear W28053205542021 @default.
- W2805320554 countsByYear W28053205542022 @default.
- W2805320554 countsByYear W28053205542023 @default.
- W2805320554 crossrefType "book-chapter" @default.
- W2805320554 hasAuthorship W2805320554A5052890418 @default.
- W2805320554 hasAuthorship W2805320554A5089775223 @default.
- W2805320554 hasConcept C119857082 @default.
- W2805320554 hasConcept C154945302 @default.
- W2805320554 hasConcept C36464697 @default.
- W2805320554 hasConcept C41008148 @default.
- W2805320554 hasConceptScore W2805320554C119857082 @default.
- W2805320554 hasConceptScore W2805320554C154945302 @default.
- W2805320554 hasConceptScore W2805320554C36464697 @default.
- W2805320554 hasConceptScore W2805320554C41008148 @default.
- W2805320554 hasLocation W28053205541 @default.
- W2805320554 hasOpenAccess W2805320554 @default.
- W2805320554 hasPrimaryLocation W28053205541 @default.
- W2805320554 hasRelatedWork W1493022169 @default.
- W2805320554 hasRelatedWork W2961085424 @default.
- W2805320554 hasRelatedWork W3046775127 @default.
- W2805320554 hasRelatedWork W3107474891 @default.
- W2805320554 hasRelatedWork W4205958290 @default.
- W2805320554 hasRelatedWork W4286629047 @default.
- W2805320554 hasRelatedWork W4306321456 @default.
- W2805320554 hasRelatedWork W4306674287 @default.
- W2805320554 hasRelatedWork W1549056443 @default.
- W2805320554 hasRelatedWork W4224009465 @default.
- W2805320554 isParatext "false" @default.
- W2805320554 isRetracted "false" @default.
- W2805320554 magId "2805320554" @default.
- W2805320554 workType "book-chapter" @default.