Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805334022> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2805334022 endingPage "133" @default.
- W2805334022 startingPage "123" @default.
- W2805334022 abstract "Accurate solar energy prediction is required for the integration of solar power into the electricity grid, to ensure reliable electricity supply, while reducing pollution. In this paper we propose a new approach based on deep learning for the task of solar photovoltaic power forecasting for the next day. We firstly evaluate the performance of the proposed algorithm using Australian solar photovoltaic data for two years. Next, we compare its performance with two other advanced methods for forecasting recently published in the literature. In particular, a forecasting algorithm based on similarity of sequences of patterns and a neural network as a reference method for solar power forecasting. Finally, the suitability of all methods to deal with big data time series is analyzed by means of a scalability study, showing the deep learning promising results for accurate solar power forecasting." @default.
- W2805334022 created "2018-06-13" @default.
- W2805334022 creator A5007453127 @default.
- W2805334022 creator A5015132867 @default.
- W2805334022 creator A5047161373 @default.
- W2805334022 creator A5052267876 @default.
- W2805334022 creator A5079360974 @default.
- W2805334022 date "2018-06-07" @default.
- W2805334022 modified "2023-10-18" @default.
- W2805334022 title "Deep Learning for Big Data Time Series Forecasting Applied to Solar Power" @default.
- W2805334022 cites W1595796962 @default.
- W2805334022 cites W1948956962 @default.
- W2805334022 cites W2004929551 @default.
- W2805334022 cites W2031939255 @default.
- W2805334022 cites W2076458415 @default.
- W2805334022 cites W2116174583 @default.
- W2805334022 cites W2570836621 @default.
- W2805334022 cites W2619260485 @default.
- W2805334022 cites W2735101460 @default.
- W2805334022 cites W2736241542 @default.
- W2805334022 cites W2763128055 @default.
- W2805334022 cites W2766090949 @default.
- W2805334022 cites W2777265487 @default.
- W2805334022 cites W2790979755 @default.
- W2805334022 doi "https://doi.org/10.1007/978-3-319-94120-2_12" @default.
- W2805334022 hasPublicationYear "2018" @default.
- W2805334022 type Work @default.
- W2805334022 sameAs 2805334022 @default.
- W2805334022 citedByCount "14" @default.
- W2805334022 countsByYear W28053340222019 @default.
- W2805334022 countsByYear W28053340222020 @default.
- W2805334022 countsByYear W28053340222021 @default.
- W2805334022 countsByYear W28053340222023 @default.
- W2805334022 crossrefType "book-chapter" @default.
- W2805334022 hasAuthorship W2805334022A5007453127 @default.
- W2805334022 hasAuthorship W2805334022A5015132867 @default.
- W2805334022 hasAuthorship W2805334022A5047161373 @default.
- W2805334022 hasAuthorship W2805334022A5052267876 @default.
- W2805334022 hasAuthorship W2805334022A5079360974 @default.
- W2805334022 hasConcept C108583219 @default.
- W2805334022 hasConcept C119599485 @default.
- W2805334022 hasConcept C119857082 @default.
- W2805334022 hasConcept C121332964 @default.
- W2805334022 hasConcept C124101348 @default.
- W2805334022 hasConcept C127413603 @default.
- W2805334022 hasConcept C143724316 @default.
- W2805334022 hasConcept C151406439 @default.
- W2805334022 hasConcept C151730666 @default.
- W2805334022 hasConcept C154945302 @default.
- W2805334022 hasConcept C163258240 @default.
- W2805334022 hasConcept C2777618391 @default.
- W2805334022 hasConcept C41008148 @default.
- W2805334022 hasConcept C41291067 @default.
- W2805334022 hasConcept C48044578 @default.
- W2805334022 hasConcept C50644808 @default.
- W2805334022 hasConcept C62520636 @default.
- W2805334022 hasConcept C75684735 @default.
- W2805334022 hasConcept C77088390 @default.
- W2805334022 hasConcept C86803240 @default.
- W2805334022 hasConceptScore W2805334022C108583219 @default.
- W2805334022 hasConceptScore W2805334022C119599485 @default.
- W2805334022 hasConceptScore W2805334022C119857082 @default.
- W2805334022 hasConceptScore W2805334022C121332964 @default.
- W2805334022 hasConceptScore W2805334022C124101348 @default.
- W2805334022 hasConceptScore W2805334022C127413603 @default.
- W2805334022 hasConceptScore W2805334022C143724316 @default.
- W2805334022 hasConceptScore W2805334022C151406439 @default.
- W2805334022 hasConceptScore W2805334022C151730666 @default.
- W2805334022 hasConceptScore W2805334022C154945302 @default.
- W2805334022 hasConceptScore W2805334022C163258240 @default.
- W2805334022 hasConceptScore W2805334022C2777618391 @default.
- W2805334022 hasConceptScore W2805334022C41008148 @default.
- W2805334022 hasConceptScore W2805334022C41291067 @default.
- W2805334022 hasConceptScore W2805334022C48044578 @default.
- W2805334022 hasConceptScore W2805334022C50644808 @default.
- W2805334022 hasConceptScore W2805334022C62520636 @default.
- W2805334022 hasConceptScore W2805334022C75684735 @default.
- W2805334022 hasConceptScore W2805334022C77088390 @default.
- W2805334022 hasConceptScore W2805334022C86803240 @default.
- W2805334022 hasLocation W28053340221 @default.
- W2805334022 hasOpenAccess W2805334022 @default.
- W2805334022 hasPrimaryLocation W28053340221 @default.
- W2805334022 hasRelatedWork W3014300295 @default.
- W2805334022 hasRelatedWork W3164822677 @default.
- W2805334022 hasRelatedWork W4223943233 @default.
- W2805334022 hasRelatedWork W4225161397 @default.
- W2805334022 hasRelatedWork W4250304930 @default.
- W2805334022 hasRelatedWork W4312200629 @default.
- W2805334022 hasRelatedWork W4360585206 @default.
- W2805334022 hasRelatedWork W4364306694 @default.
- W2805334022 hasRelatedWork W4380075502 @default.
- W2805334022 hasRelatedWork W4380086463 @default.
- W2805334022 isParatext "false" @default.
- W2805334022 isRetracted "false" @default.
- W2805334022 magId "2805334022" @default.
- W2805334022 workType "book-chapter" @default.