Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805358920> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2805358920 abstract "Nowadays, people use mobile social media networks such as Twitter and Facebook to connect with others. In this work, we discuss the problem of context-aware data caching in the heterogeneous small cell networks (HSCNs) to reduce the service delay for the end users. In the data-caching model, there are three types of cache entities, which are edge caching elements (CAEs), small cell base stations (SBSs), and macro cell base stations (MBS). We propose a deep learning model using the convolutional neural network (CNN) to apply sentence analysis on the data and extract information content in the data from end users. We can predict the data that will most likely to be requested by the end users to reduce service latency by caching the data close to the end users by the interest of the end users. We shows the effectiveness of our proposed algorithm by comparing with other approaches in our simulation." @default.
- W2805358920 created "2018-06-13" @default.
- W2805358920 creator A5012278873 @default.
- W2805358920 creator A5063667378 @default.
- W2805358920 creator A5090033778 @default.
- W2805358920 date "2018-04-01" @default.
- W2805358920 modified "2023-09-22" @default.
- W2805358920 title "Mobile social media networks caching with convolutional neural network" @default.
- W2805358920 cites W1555291764 @default.
- W2805358920 cites W1916752577 @default.
- W2805358920 cites W1960633731 @default.
- W2805358920 cites W1969611313 @default.
- W2805358920 cites W1981699781 @default.
- W2805358920 cites W2102648701 @default.
- W2805358920 cites W2114524997 @default.
- W2805358920 cites W2477538127 @default.
- W2805358920 doi "https://doi.org/10.1109/wcncw.2018.8368988" @default.
- W2805358920 hasPublicationYear "2018" @default.
- W2805358920 type Work @default.
- W2805358920 sameAs 2805358920 @default.
- W2805358920 citedByCount "21" @default.
- W2805358920 countsByYear W28053589202018 @default.
- W2805358920 countsByYear W28053589202019 @default.
- W2805358920 countsByYear W28053589202020 @default.
- W2805358920 countsByYear W28053589202021 @default.
- W2805358920 countsByYear W28053589202022 @default.
- W2805358920 countsByYear W28053589202023 @default.
- W2805358920 crossrefType "proceedings-article" @default.
- W2805358920 hasAuthorship W2805358920A5012278873 @default.
- W2805358920 hasAuthorship W2805358920A5063667378 @default.
- W2805358920 hasAuthorship W2805358920A5090033778 @default.
- W2805358920 hasConcept C115537543 @default.
- W2805358920 hasConcept C136264566 @default.
- W2805358920 hasConcept C151730666 @default.
- W2805358920 hasConcept C153646914 @default.
- W2805358920 hasConcept C154945302 @default.
- W2805358920 hasConcept C162307627 @default.
- W2805358920 hasConcept C162324750 @default.
- W2805358920 hasConcept C166955791 @default.
- W2805358920 hasConcept C199360897 @default.
- W2805358920 hasConcept C2779343474 @default.
- W2805358920 hasConcept C2780378061 @default.
- W2805358920 hasConcept C31258907 @default.
- W2805358920 hasConcept C41008148 @default.
- W2805358920 hasConcept C68649174 @default.
- W2805358920 hasConcept C74296488 @default.
- W2805358920 hasConcept C76155785 @default.
- W2805358920 hasConcept C81363708 @default.
- W2805358920 hasConcept C82876162 @default.
- W2805358920 hasConcept C86803240 @default.
- W2805358920 hasConceptScore W2805358920C115537543 @default.
- W2805358920 hasConceptScore W2805358920C136264566 @default.
- W2805358920 hasConceptScore W2805358920C151730666 @default.
- W2805358920 hasConceptScore W2805358920C153646914 @default.
- W2805358920 hasConceptScore W2805358920C154945302 @default.
- W2805358920 hasConceptScore W2805358920C162307627 @default.
- W2805358920 hasConceptScore W2805358920C162324750 @default.
- W2805358920 hasConceptScore W2805358920C166955791 @default.
- W2805358920 hasConceptScore W2805358920C199360897 @default.
- W2805358920 hasConceptScore W2805358920C2779343474 @default.
- W2805358920 hasConceptScore W2805358920C2780378061 @default.
- W2805358920 hasConceptScore W2805358920C31258907 @default.
- W2805358920 hasConceptScore W2805358920C41008148 @default.
- W2805358920 hasConceptScore W2805358920C68649174 @default.
- W2805358920 hasConceptScore W2805358920C74296488 @default.
- W2805358920 hasConceptScore W2805358920C76155785 @default.
- W2805358920 hasConceptScore W2805358920C81363708 @default.
- W2805358920 hasConceptScore W2805358920C82876162 @default.
- W2805358920 hasConceptScore W2805358920C86803240 @default.
- W2805358920 hasLocation W28053589201 @default.
- W2805358920 hasOpenAccess W2805358920 @default.
- W2805358920 hasPrimaryLocation W28053589201 @default.
- W2805358920 hasRelatedWork W1503860218 @default.
- W2805358920 hasRelatedWork W1575413128 @default.
- W2805358920 hasRelatedWork W2048574738 @default.
- W2805358920 hasRelatedWork W2103015965 @default.
- W2805358920 hasRelatedWork W2134721134 @default.
- W2805358920 hasRelatedWork W2138045580 @default.
- W2805358920 hasRelatedWork W2337857879 @default.
- W2805358920 hasRelatedWork W3033499831 @default.
- W2805358920 hasRelatedWork W3120678039 @default.
- W2805358920 hasRelatedWork W4376106090 @default.
- W2805358920 isParatext "false" @default.
- W2805358920 isRetracted "false" @default.
- W2805358920 magId "2805358920" @default.
- W2805358920 workType "article" @default.