Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805408935> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2805408935 endingPage "759" @default.
- W2805408935 startingPage "749" @default.
- W2805408935 abstract "Vehicle model recognition plays a crucial role in intelligent transportation systems. Most of the existing vehicle model recognition methods focus on locating a large global feature or extracting more than one local subordinate-level feature from a vehicle image. In this paper, we propose the principal component analysis network-based convolutional neural network (PCNN) and pinpoint only one discriminative local feature of a vehicle, which is the vehicle headlamp, for vehicle model recognition. The proposed model eliminates the need for locating and segmenting the headlamp precisely. In particular, PCNN ascertains the effectiveness of both principal component analysis and CNN in extracting hierarchical features from a vehicle headlamp image and also reducing the computational complexity of the traditional CNN system. To further enhance the training procedure while still keeping the discriminative property of the network, the fully connected layer is updated by backpropagation optimized with stochastic gradient descent. The proposed method is validated using a data set that comprises 13 300 training images and 2660 testing images, respectively. The model is robust against various distortions. Experiments show that PCNN outperforms state-of-the-art techniques with an average accuracy of 99.51% over 38 vehicle makes and models using the PLUS data set. In addition, the effectiveness of the proposed method is also validated using the public CompCars data set, achieving 89.83% accuracy over 357 vehicle models." @default.
- W2805408935 created "2018-06-13" @default.
- W2805408935 creator A5034017777 @default.
- W2805408935 creator A5046024905 @default.
- W2805408935 creator A5075948725 @default.
- W2805408935 creator A5090331621 @default.
- W2805408935 date "2019-02-01" @default.
- W2805408935 modified "2023-10-17" @default.
- W2805408935 title "PCANet-Based Convolutional Neural Network Architecture for a Vehicle Model Recognition System" @default.
- W2805408935 cites W1958236864 @default.
- W2805408935 cites W1963882359 @default.
- W2805408935 cites W1992636780 @default.
- W2805408935 cites W2007657444 @default.
- W2805408935 cites W2012313888 @default.
- W2805408935 cites W2026156619 @default.
- W2805408935 cites W2045721916 @default.
- W2805408935 cites W2054256694 @default.
- W2805408935 cites W2069428064 @default.
- W2805408935 cites W2080829704 @default.
- W2805408935 cites W2085692415 @default.
- W2805408935 cites W2123203601 @default.
- W2805408935 cites W2131490314 @default.
- W2805408935 cites W2139323304 @default.
- W2805408935 cites W2158895499 @default.
- W2805408935 cites W2171786422 @default.
- W2805408935 cites W2179713099 @default.
- W2805408935 cites W2320729788 @default.
- W2805408935 cites W2336995393 @default.
- W2805408935 cites W2343184955 @default.
- W2805408935 cites W2470322391 @default.
- W2805408935 cites W2531619007 @default.
- W2805408935 cites W2549125172 @default.
- W2805408935 cites W2748214721 @default.
- W2805408935 cites W2964188889 @default.
- W2805408935 cites W3102431071 @default.
- W2805408935 cites W4238404964 @default.
- W2805408935 cites W2088920913 @default.
- W2805408935 doi "https://doi.org/10.1109/tits.2018.2833620" @default.
- W2805408935 hasPublicationYear "2019" @default.
- W2805408935 type Work @default.
- W2805408935 sameAs 2805408935 @default.
- W2805408935 citedByCount "26" @default.
- W2805408935 countsByYear W28054089352018 @default.
- W2805408935 countsByYear W28054089352019 @default.
- W2805408935 countsByYear W28054089352020 @default.
- W2805408935 countsByYear W28054089352021 @default.
- W2805408935 countsByYear W28054089352022 @default.
- W2805408935 countsByYear W28054089352023 @default.
- W2805408935 crossrefType "journal-article" @default.
- W2805408935 hasAuthorship W2805408935A5034017777 @default.
- W2805408935 hasAuthorship W2805408935A5046024905 @default.
- W2805408935 hasAuthorship W2805408935A5075948725 @default.
- W2805408935 hasAuthorship W2805408935A5090331621 @default.
- W2805408935 hasConcept C123657996 @default.
- W2805408935 hasConcept C142362112 @default.
- W2805408935 hasConcept C153349607 @default.
- W2805408935 hasConcept C154945302 @default.
- W2805408935 hasConcept C41008148 @default.
- W2805408935 hasConcept C81363708 @default.
- W2805408935 hasConceptScore W2805408935C123657996 @default.
- W2805408935 hasConceptScore W2805408935C142362112 @default.
- W2805408935 hasConceptScore W2805408935C153349607 @default.
- W2805408935 hasConceptScore W2805408935C154945302 @default.
- W2805408935 hasConceptScore W2805408935C41008148 @default.
- W2805408935 hasConceptScore W2805408935C81363708 @default.
- W2805408935 hasFunder F4320321709 @default.
- W2805408935 hasIssue "2" @default.
- W2805408935 hasLocation W28054089351 @default.
- W2805408935 hasOpenAccess W2805408935 @default.
- W2805408935 hasPrimaryLocation W28054089351 @default.
- W2805408935 hasRelatedWork W2285788670 @default.
- W2805408935 hasRelatedWork W2521062615 @default.
- W2805408935 hasRelatedWork W2735477435 @default.
- W2805408935 hasRelatedWork W2901346193 @default.
- W2805408935 hasRelatedWork W2901465038 @default.
- W2805408935 hasRelatedWork W2955938200 @default.
- W2805408935 hasRelatedWork W2998526951 @default.
- W2805408935 hasRelatedWork W3090822330 @default.
- W2805408935 hasRelatedWork W3119610945 @default.
- W2805408935 hasRelatedWork W3181746755 @default.
- W2805408935 hasVolume "20" @default.
- W2805408935 isParatext "false" @default.
- W2805408935 isRetracted "false" @default.
- W2805408935 magId "2805408935" @default.
- W2805408935 workType "article" @default.