Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805461896> ?p ?o ?g. }
- W2805461896 endingPage "75" @default.
- W2805461896 startingPage "55" @default.
- W2805461896 abstract "Sub-annually resolved environmental proxies can be valuable archives of climate change, but they are rare in terrestrial settings, and it can be difficult to verify their annual nature. We suggest that speleothems that grow in well-ventilated zones of caves may preserve such high-resolution records. Near-entrance cave environments are characterized by year-round, near-atmospheric CO2 concentrations and are significantly influenced by surface air temperature fluctuations, particularly in temperate latitudes. Previous monitoring studies of a well-ventilated, temperate-latitude cave (Westcave Preserve, central Texas) have documented seasonal variations in the oxygen isotope composition of calcite grown on glass substrates (with winter δ18O maxima and summer δ18O minima) as well as seasonal variations in drip water trace element compositions. Extending this work to a stalagmite (WC-3) from the same drip site, we find that stalagmite δ18O variations are similar in magnitude to the seasonal δ18O variations previously observed for calcite grown on glass substrates, that stalagmite [Mg] variations have a similar seasonal period with winter minima and summer maxima, and that geochemical variations follow stalagmite growth fabric as mm-scale couplets comprising thin, slow-growing, compact sparry calcite laminae (winters) and thicker, fast-growing, porous-elongate columnar calcite laminae (summers). We interpret a high-resolution (weekly to monthly) 52-year record of δ18O, Mg, Sr, and Ba in WC-3, and report new monthly measurements of drip water and associated calcite grown on glass substrates. We find drip water δ18O and [Mg]/[Ca] are essentially invariant and that seasonal variations in WC-3 calcite δ18O and Mg concentration agree well with predicted temperature-dependent fractionation between water and calcite. WC-3 calcite Sr and Ba also vary, but with higher and more variable frequencies compared to δ18O and [Mg]. The annual nature of δ18O and [Mg] cycles is supported by monitoring and 14C bomb-peak chronology. We suggest that stalagmite δ18O and [Mg] vary primarily in response to large seasonal temperature changes in this setting, allowing for unambiguous differentiation between summer and winter calcite growth. From such δ18O- and [Mg]- derived sub-annual chronologies, the timing of enrichments in other geochemical species that are less directly coupled to external cave temperature (e.g., calcite Sr and Ba) can be considered as proxies of other important processes such as water-rock interaction in the epikarst, precipitation events, or subsurface respiration rates. The potential for this kind of multi-proxy, seasonally-resolved dating may add near-entrance stalagmites to the list (ice cores, lake varves, tree rings) of high-resolution terrestrial proxies available for paleoclimate studies." @default.
- W2805461896 created "2018-06-13" @default.
- W2805461896 creator A5030200047 @default.
- W2805461896 creator A5041647113 @default.
- W2805461896 creator A5046237493 @default.
- W2805461896 creator A5072102628 @default.
- W2805461896 creator A5085422111 @default.
- W2805461896 date "2018-08-01" @default.
- W2805461896 modified "2023-09-23" @default.
- W2805461896 title "The potential of near-entrance stalagmites as high-resolution terrestrial paleoclimate proxies: Application of isotope and trace-element geochemistry to seasonally-resolved chronology" @default.
- W2805461896 cites W1527555555 @default.
- W2805461896 cites W1947417562 @default.
- W2805461896 cites W1954855185 @default.
- W2805461896 cites W1966168637 @default.
- W2805461896 cites W1972238189 @default.
- W2805461896 cites W1976556587 @default.
- W2805461896 cites W1978790267 @default.
- W2805461896 cites W1980495087 @default.
- W2805461896 cites W1981926445 @default.
- W2805461896 cites W1982888605 @default.
- W2805461896 cites W1985002123 @default.
- W2805461896 cites W1986442196 @default.
- W2805461896 cites W1987498644 @default.
- W2805461896 cites W1990542682 @default.
- W2805461896 cites W1991952401 @default.
- W2805461896 cites W1996167059 @default.
- W2805461896 cites W1996172693 @default.
- W2805461896 cites W1998572667 @default.
- W2805461896 cites W1999902834 @default.
- W2805461896 cites W2002691206 @default.
- W2805461896 cites W2005838126 @default.
- W2805461896 cites W2006523608 @default.
- W2805461896 cites W2006705723 @default.
- W2805461896 cites W2008281306 @default.
- W2805461896 cites W2014345960 @default.
- W2805461896 cites W2015198040 @default.
- W2805461896 cites W2017386151 @default.
- W2805461896 cites W2017913935 @default.
- W2805461896 cites W2018065255 @default.
- W2805461896 cites W2022882291 @default.
- W2805461896 cites W2023766611 @default.
- W2805461896 cites W2024943626 @default.
- W2805461896 cites W2030129547 @default.
- W2805461896 cites W2030130506 @default.
- W2805461896 cites W2037295081 @default.
- W2805461896 cites W2056101302 @default.
- W2805461896 cites W2060341446 @default.
- W2805461896 cites W2061475208 @default.
- W2805461896 cites W2063009391 @default.
- W2805461896 cites W2063288861 @default.
- W2805461896 cites W2068453931 @default.
- W2805461896 cites W2068694563 @default.
- W2805461896 cites W2068850788 @default.
- W2805461896 cites W2079244853 @default.
- W2805461896 cites W2080680312 @default.
- W2805461896 cites W2082229617 @default.
- W2805461896 cites W2086192317 @default.
- W2805461896 cites W2087408053 @default.
- W2805461896 cites W2089177966 @default.
- W2805461896 cites W2093376535 @default.
- W2805461896 cites W2097695931 @default.
- W2805461896 cites W2100184350 @default.
- W2805461896 cites W2104768705 @default.
- W2805461896 cites W2109334730 @default.
- W2805461896 cites W2112925614 @default.
- W2805461896 cites W2121713848 @default.
- W2805461896 cites W2131062081 @default.
- W2805461896 cites W2132446814 @default.
- W2805461896 cites W2139388007 @default.
- W2805461896 cites W2139404099 @default.
- W2805461896 cites W2146543851 @default.
- W2805461896 cites W2156771808 @default.
- W2805461896 cites W2158460373 @default.
- W2805461896 cites W2163435586 @default.
- W2805461896 cites W2164232903 @default.
- W2805461896 cites W2165291631 @default.
- W2805461896 cites W2176593958 @default.
- W2805461896 cites W2298516921 @default.
- W2805461896 cites W2317561376 @default.
- W2805461896 cites W2484546330 @default.
- W2805461896 cites W2492956348 @default.
- W2805461896 cites W2508419634 @default.
- W2805461896 cites W2538694530 @default.
- W2805461896 cites W2598760419 @default.
- W2805461896 cites W2896485387 @default.
- W2805461896 doi "https://doi.org/10.1016/j.gca.2018.04.036" @default.
- W2805461896 hasPublicationYear "2018" @default.
- W2805461896 type Work @default.
- W2805461896 sameAs 2805461896 @default.
- W2805461896 citedByCount "11" @default.
- W2805461896 countsByYear W28054618962018 @default.
- W2805461896 countsByYear W28054618962019 @default.
- W2805461896 countsByYear W28054618962020 @default.
- W2805461896 countsByYear W28054618962021 @default.
- W2805461896 countsByYear W28054618962022 @default.
- W2805461896 countsByYear W28054618962023 @default.
- W2805461896 crossrefType "journal-article" @default.
- W2805461896 hasAuthorship W2805461896A5030200047 @default.