Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805465265> ?p ?o ?g. }
- W2805465265 endingPage "6213" @default.
- W2805465265 startingPage "6196" @default.
- W2805465265 abstract "Several bandwise total variation (TV) regularized low-rank (LR)-based models have been proposed to remove mixed noise in hyperspectral images (HSIs). These methods convert high-dimensional HSI data into 2-D data based on LR matrix factorization. This strategy introduces the loss of useful multiway structure information. Moreover, these bandwise TV-based methods exploit the spatial information in a separate manner. To cope with these problems, we propose a spatial–spectral TV regularized LR tensor factorization (SSTV-LRTF) method to remove mixed noise in HSIs. From one aspect, the hyperspectral data are assumed to lie in an LR tensor, which can exploit the inherent tensorial structure of hyperspectral data. The LRTF-based method can effectively separate the LR clean image from sparse noise. From another aspect, HSIs are assumed to be piecewisely smooth in the spatial domain. The TV regularization is effective in preserving the spatial piecewise smoothness and removing Gaussian noise. These facts inspire the integration of the LRTF with TV regularization. To address the limitations of bandwise TV, we use the SSTV regularization to simultaneously consider local spatial structure and spectral correlation of neighboring bands. Both simulated and real data experiments demonstrate that the proposed SSTV-LRTF method achieves superior performance for HSI mixed-noise removal, as compared to the state-of-the-art TV regularized and LR-based methods." @default.
- W2805465265 created "2018-06-13" @default.
- W2805465265 creator A5013644792 @default.
- W2805465265 creator A5040010053 @default.
- W2805465265 creator A5062011702 @default.
- W2805465265 creator A5069334991 @default.
- W2805465265 creator A5082887216 @default.
- W2805465265 date "2018-10-01" @default.
- W2805465265 modified "2023-10-17" @default.
- W2805465265 title "Spatial–Spectral Total Variation Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Denoising" @default.
- W2805465265 cites W1944540851 @default.
- W2805465265 cites W1965615696 @default.
- W2805465265 cites W1969352102 @default.
- W2805465265 cites W1976615758 @default.
- W2805465265 cites W1977066218 @default.
- W2805465265 cites W1981196578 @default.
- W2805465265 cites W1985242206 @default.
- W2805465265 cites W1992426838 @default.
- W2805465265 cites W1994040806 @default.
- W2805465265 cites W1994219736 @default.
- W2805465265 cites W2024165284 @default.
- W2805465265 cites W2030927653 @default.
- W2805465265 cites W2033849598 @default.
- W2805465265 cites W2043571470 @default.
- W2805465265 cites W2053358078 @default.
- W2805465265 cites W2053514113 @default.
- W2805465265 cites W2067983477 @default.
- W2805465265 cites W2072026894 @default.
- W2805465265 cites W2080843093 @default.
- W2805465265 cites W2082600204 @default.
- W2805465265 cites W2087263574 @default.
- W2805465265 cites W2107799335 @default.
- W2805465265 cites W2110940063 @default.
- W2805465265 cites W2126773133 @default.
- W2805465265 cites W2129891925 @default.
- W2805465265 cites W2133665775 @default.
- W2805465265 cites W2136251662 @default.
- W2805465265 cites W2145598948 @default.
- W2805465265 cites W2145962650 @default.
- W2805465265 cites W2160924560 @default.
- W2805465265 cites W2162276208 @default.
- W2805465265 cites W2163886442 @default.
- W2805465265 cites W2166864699 @default.
- W2805465265 cites W2171520281 @default.
- W2805465265 cites W2256634236 @default.
- W2805465265 cites W2266694576 @default.
- W2805465265 cites W2289756263 @default.
- W2805465265 cites W2295336607 @default.
- W2805465265 cites W2333549353 @default.
- W2805465265 cites W2336104109 @default.
- W2805465265 cites W2344025572 @default.
- W2805465265 cites W2401672073 @default.
- W2805465265 cites W2409172398 @default.
- W2805465265 cites W2480706550 @default.
- W2805465265 cites W2496621835 @default.
- W2805465265 cites W2591248827 @default.
- W2805465265 cites W2604977491 @default.
- W2805465265 cites W2809795042 @default.
- W2805465265 cites W2964214749 @default.
- W2805465265 cites W3099187963 @default.
- W2805465265 cites W3104072696 @default.
- W2805465265 doi "https://doi.org/10.1109/tgrs.2018.2833473" @default.
- W2805465265 hasPublicationYear "2018" @default.
- W2805465265 type Work @default.
- W2805465265 sameAs 2805465265 @default.
- W2805465265 citedByCount "123" @default.
- W2805465265 countsByYear W28054652652018 @default.
- W2805465265 countsByYear W28054652652019 @default.
- W2805465265 countsByYear W28054652652020 @default.
- W2805465265 countsByYear W28054652652021 @default.
- W2805465265 countsByYear W28054652652022 @default.
- W2805465265 countsByYear W28054652652023 @default.
- W2805465265 crossrefType "journal-article" @default.
- W2805465265 hasAuthorship W2805465265A5013644792 @default.
- W2805465265 hasAuthorship W2805465265A5040010053 @default.
- W2805465265 hasAuthorship W2805465265A5062011702 @default.
- W2805465265 hasAuthorship W2805465265A5069334991 @default.
- W2805465265 hasAuthorship W2805465265A5082887216 @default.
- W2805465265 hasConcept C114614502 @default.
- W2805465265 hasConcept C121332964 @default.
- W2805465265 hasConcept C124681953 @default.
- W2805465265 hasConcept C153180895 @default.
- W2805465265 hasConcept C154945302 @default.
- W2805465265 hasConcept C155281189 @default.
- W2805465265 hasConcept C158693339 @default.
- W2805465265 hasConcept C159078339 @default.
- W2805465265 hasConcept C163294075 @default.
- W2805465265 hasConcept C164226766 @default.
- W2805465265 hasConcept C178790620 @default.
- W2805465265 hasConcept C185592680 @default.
- W2805465265 hasConcept C202444582 @default.
- W2805465265 hasConcept C207282899 @default.
- W2805465265 hasConcept C2983327147 @default.
- W2805465265 hasConcept C33923547 @default.
- W2805465265 hasConcept C41008148 @default.
- W2805465265 hasConcept C42355184 @default.
- W2805465265 hasConcept C62520636 @default.
- W2805465265 hasConceptScore W2805465265C114614502 @default.