Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805535486> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2805535486 endingPage "170" @default.
- W2805535486 startingPage "166" @default.
- W2805535486 abstract "Terrestrial LiDAR data can be used to extract accurate structure parameters of corn plant and canopy, such as leaf area, leaf distribution, and 3D model. The first step of these applications is to extract corn leaf points from unorganized LiDAR point clouds. This paper focused on an automated extraction algorithm for identifying the points returning on corn leaf from massive, unorganized LiDAR point clouds. In order to mine the distinct geometry of corn leaves and stalk, the Difference of Normal (DoN) method was proposed to extract corn leaf points. Firstly, the normals of corn leaf surface for all points were estimated on multiple scales. Secondly, the directional ambiguity of the normals was eliminated to obtain the same normal direction for the same leaf distribution. Finally, the DoN was computed and the computed DoN results on the optimal scale were used to extract leave points. The quantitative accuracy assessment showed that the overall accuracy was 94.10%, commission error was 5.89%, and omission error was 18.65%. The results indicate that the proposed method is effective and the corn leaf points can be extracted automatically from massive, unorganized terrestrial LiDAR point clouds using the proposed DoN method.Keywords: corn leaves, terrestrial LiDAR, cloud points, automatic extraction, crop growth monitoring, phenotyping, difference of normal (DoN), directional ambiguity of the normalsDOI: 10.25165/j.ijabe.20181103.3177Citation: Su W, Zhang M Z, Liu J M. Automated extraction of corn leaf points from unorganized terrestrial LiDAR point clouds. Int J Agric & Biol Eng, 2018; 11(3): 166–170." @default.
- W2805535486 created "2018-06-13" @default.
- W2805535486 creator A5004026148 @default.
- W2805535486 creator A5025127998 @default.
- W2805535486 creator A5036732883 @default.
- W2805535486 creator A5089686894 @default.
- W2805535486 date "2018-06-01" @default.
- W2805535486 modified "2023-09-24" @default.
- W2805535486 title "Automated extraction of corn leaf points from unorganized terrestrial LiDAR point clouds" @default.
- W2805535486 doi "https://doi.org/10.25165/ijabe.v11i3.3177" @default.
- W2805535486 hasPublicationYear "2018" @default.
- W2805535486 type Work @default.
- W2805535486 sameAs 2805535486 @default.
- W2805535486 citedByCount "0" @default.
- W2805535486 crossrefType "journal-article" @default.
- W2805535486 hasAuthorship W2805535486A5004026148 @default.
- W2805535486 hasAuthorship W2805535486A5025127998 @default.
- W2805535486 hasAuthorship W2805535486A5036732883 @default.
- W2805535486 hasAuthorship W2805535486A5089686894 @default.
- W2805535486 hasConcept C101000010 @default.
- W2805535486 hasConcept C11413529 @default.
- W2805535486 hasConcept C131979681 @default.
- W2805535486 hasConcept C154945302 @default.
- W2805535486 hasConcept C185592680 @default.
- W2805535486 hasConcept C205649164 @default.
- W2805535486 hasConcept C2524010 @default.
- W2805535486 hasConcept C28719098 @default.
- W2805535486 hasConcept C33923547 @default.
- W2805535486 hasConcept C39432304 @default.
- W2805535486 hasConcept C41008148 @default.
- W2805535486 hasConcept C43617362 @default.
- W2805535486 hasConcept C4725764 @default.
- W2805535486 hasConcept C51399673 @default.
- W2805535486 hasConcept C59822182 @default.
- W2805535486 hasConcept C62649853 @default.
- W2805535486 hasConcept C86803240 @default.
- W2805535486 hasConceptScore W2805535486C101000010 @default.
- W2805535486 hasConceptScore W2805535486C11413529 @default.
- W2805535486 hasConceptScore W2805535486C131979681 @default.
- W2805535486 hasConceptScore W2805535486C154945302 @default.
- W2805535486 hasConceptScore W2805535486C185592680 @default.
- W2805535486 hasConceptScore W2805535486C205649164 @default.
- W2805535486 hasConceptScore W2805535486C2524010 @default.
- W2805535486 hasConceptScore W2805535486C28719098 @default.
- W2805535486 hasConceptScore W2805535486C33923547 @default.
- W2805535486 hasConceptScore W2805535486C39432304 @default.
- W2805535486 hasConceptScore W2805535486C41008148 @default.
- W2805535486 hasConceptScore W2805535486C43617362 @default.
- W2805535486 hasConceptScore W2805535486C4725764 @default.
- W2805535486 hasConceptScore W2805535486C51399673 @default.
- W2805535486 hasConceptScore W2805535486C59822182 @default.
- W2805535486 hasConceptScore W2805535486C62649853 @default.
- W2805535486 hasConceptScore W2805535486C86803240 @default.
- W2805535486 hasIssue "3" @default.
- W2805535486 hasLocation W28055354861 @default.
- W2805535486 hasOpenAccess W2805535486 @default.
- W2805535486 hasPrimaryLocation W28055354861 @default.
- W2805535486 hasRelatedWork W1987742815 @default.
- W2805535486 hasRelatedWork W2118389835 @default.
- W2805535486 hasRelatedWork W2198862886 @default.
- W2805535486 hasRelatedWork W2555132450 @default.
- W2805535486 hasRelatedWork W2603404994 @default.
- W2805535486 hasRelatedWork W2769416190 @default.
- W2805535486 hasRelatedWork W2808911004 @default.
- W2805535486 hasRelatedWork W2895862261 @default.
- W2805535486 hasRelatedWork W2907127092 @default.
- W2805535486 hasRelatedWork W2907261264 @default.
- W2805535486 hasRelatedWork W2914172611 @default.
- W2805535486 hasRelatedWork W2915801748 @default.
- W2805535486 hasRelatedWork W2916389396 @default.
- W2805535486 hasRelatedWork W2948938953 @default.
- W2805535486 hasRelatedWork W2982657414 @default.
- W2805535486 hasRelatedWork W2989421653 @default.
- W2805535486 hasRelatedWork W3009022214 @default.
- W2805535486 hasRelatedWork W3177157729 @default.
- W2805535486 hasRelatedWork W3206958772 @default.
- W2805535486 hasRelatedWork W2845851899 @default.
- W2805535486 hasVolume "11" @default.
- W2805535486 isParatext "false" @default.
- W2805535486 isRetracted "false" @default.
- W2805535486 magId "2805535486" @default.
- W2805535486 workType "article" @default.