Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805557900> ?p ?o ?g. }
- W2805557900 endingPage "1384.e16" @default.
- W2805557900 startingPage "1370" @default.
- W2805557900 abstract "•Identification of >35 HS protein-coding genes expressed during human corticogenesis•NOTCH2NL human-specific paralogs of NOTCH2 expressed in human cortical progenitors•NOTCH2NL genes expand human cortical progenitors and their neuronal output•NOTCH2NL promotes Notch signaling through cis-inhibition of Delta/Notch interactions The cerebral cortex underwent rapid expansion and increased complexity during recent hominid evolution. Gene duplications constitute a major evolutionary force, but their impact on human brain development remains unclear. Using tailored RNA sequencing (RNA-seq), we profiled the spatial and temporal expression of hominid-specific duplicated (HS) genes in the human fetal cortex and identified a repertoire of 35 HS genes displaying robust and dynamic patterns during cortical neurogenesis. Among them NOTCH2NL, human-specific paralogs of the NOTCH2 receptor, stood out for their ability to promote cortical progenitor maintenance. NOTCH2NL promote the clonal expansion of human cortical progenitors, ultimately leading to higher neuronal output. At the molecular level, NOTCH2NL function by activating the Notch pathway through inhibition of cis Delta/Notch interactions. Our study uncovers a large repertoire of recently evolved genes active during human corticogenesis and reveals how human-specific NOTCH paralogs may have contributed to the expansion of the human cortex. The cerebral cortex underwent rapid expansion and increased complexity during recent hominid evolution. Gene duplications constitute a major evolutionary force, but their impact on human brain development remains unclear. Using tailored RNA sequencing (RNA-seq), we profiled the spatial and temporal expression of hominid-specific duplicated (HS) genes in the human fetal cortex and identified a repertoire of 35 HS genes displaying robust and dynamic patterns during cortical neurogenesis. Among them NOTCH2NL, human-specific paralogs of the NOTCH2 receptor, stood out for their ability to promote cortical progenitor maintenance. NOTCH2NL promote the clonal expansion of human cortical progenitors, ultimately leading to higher neuronal output. At the molecular level, NOTCH2NL function by activating the Notch pathway through inhibition of cis Delta/Notch interactions. Our study uncovers a large repertoire of recently evolved genes active during human corticogenesis and reveals how human-specific NOTCH paralogs may have contributed to the expansion of the human cortex. The cerebral cortex underwent a considerable increase in size and complexity over the last millions of years of hominid evolution, with significant impact on the acquisition of cognitive functions in the human species (Hill and Walsh, 2005Hill R.S. Walsh C.A. Molecular insights into human brain evolution.Nature. 2005; 437: 64-67Crossref PubMed Scopus (160) Google Scholar, Lui et al., 2011Lui J.H. Hansen D.V. Kriegstein A.R. Development and evolution of the human neocortex.Cell. 2011; 146: 18-36Abstract Full Text Full Text PDF PubMed Scopus (875) Google Scholar, Rakic, 2009Rakic P. Evolution of the neocortex: a perspective from developmental biology.Nat. Rev. Neurosci. 2009; 10: 724-735Crossref PubMed Scopus (961) Google Scholar, Sousa et al., 2017Sousa A.M.M. Meyer K.A. Santpere G. Gulden F.O. Sestan N. Evolution of the Human Nervous System Function, Structure, and Development.Cell. 2017; 170: 226-247Abstract Full Text Full Text PDF PubMed Scopus (184) Google Scholar). As the enlargement of the human cortex is largely due to an increased number of cortical neurons (Amadio and Walsh, 2006Amadio J.P. Walsh C.A. Brain evolution and uniqueness in the human genome.Cell. 2006; 126: 1033-1035Abstract Full Text Full Text PDF PubMed Scopus (19) Google Scholar, Rakic, 2009Rakic P. Evolution of the neocortex: a perspective from developmental biology.Nat. Rev. Neurosci. 2009; 10: 724-735Crossref PubMed Scopus (961) Google Scholar, Sousa et al., 2017Sousa A.M.M. Meyer K.A. Santpere G. Gulden F.O. Sestan N. Evolution of the Human Nervous System Function, Structure, and Development.Cell. 2017; 170: 226-247Abstract Full Text Full Text PDF PubMed Scopus (184) Google Scholar), it is likely caused by species-specific mechanisms of cortical neurogenesis (Borrell and Reillo, 2012Borrell V. Reillo I. Emerging roles of neural stem cells in cerebral cortex development and evolution.Dev. Neurobiol. 2012; 72: 955-971Crossref PubMed Scopus (134) Google Scholar, Geschwind and Rakic, 2013Geschwind D.H. Rakic P. Cortical evolution: judge the brain by its cover.Neuron. 2013; 80: 633-647Abstract Full Text Full Text PDF PubMed Scopus (335) Google Scholar, Lui et al., 2011Lui J.H. Hansen D.V. Kriegstein A.R. Development and evolution of the human neocortex.Cell. 2011; 146: 18-36Abstract Full Text Full Text PDF PubMed Scopus (875) Google Scholar, Molnár et al., 2006Molnár Z. Métin C. Stoykova A. Tarabykin V. Price D.J. Francis F. Meyer G. Dehay C. Kennedy H. Comparative aspects of cerebral cortical development.Eur. J. Neurosci. 2006; 23: 921-934Crossref PubMed Scopus (213) Google Scholar, Taverna et al., 2014Taverna E. Götz M. Huttner W.B. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex.Annu. Rev. Cell Dev. Biol. 2014; 30: 465-502Crossref PubMed Scopus (452) Google Scholar). Cortical neurogenesis is well conserved among mammals, but a number of divergent features have been identified that are linked to expansion of cortical progenitors and thereby to a higher neuronal production in the human (Borrell and Reillo, 2012Borrell V. Reillo I. Emerging roles of neural stem cells in cerebral cortex development and evolution.Dev. Neurobiol. 2012; 72: 955-971Crossref PubMed Scopus (134) Google Scholar, Geschwind and Rakic, 2013Geschwind D.H. Rakic P. Cortical evolution: judge the brain by its cover.Neuron. 2013; 80: 633-647Abstract Full Text Full Text PDF PubMed Scopus (335) Google Scholar, Lui et al., 2011Lui J.H. Hansen D.V. Kriegstein A.R. Development and evolution of the human neocortex.Cell. 2011; 146: 18-36Abstract Full Text Full Text PDF PubMed Scopus (875) Google Scholar, Molnár et al., 2006Molnár Z. Métin C. Stoykova A. Tarabykin V. Price D.J. Francis F. Meyer G. Dehay C. Kennedy H. Comparative aspects of cerebral cortical development.Eur. J. Neurosci. 2006; 23: 921-934Crossref PubMed Scopus (213) Google Scholar, Taverna et al., 2014Taverna E. Götz M. Huttner W.B. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex.Annu. Rev. Cell Dev. Biol. 2014; 30: 465-502Crossref PubMed Scopus (452) Google Scholar). Radial glial (RG) cells, located in the ventricular zone (VZ), constitute the major subtype of neurogenic cortical progenitors (Kriegstein and Alvarez-Buylla, 2009Kriegstein A. Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells.Annu. Rev. Neurosci. 2009; 32: 149-184Crossref PubMed Scopus (1629) Google Scholar, Pinto and Götz, 2007Pinto L. Götz M. Radial glial cell heterogeneity--the source of diverse progeny in the CNS.Prog. Neurobiol. 2007; 83: 2-23Crossref PubMed Scopus (204) Google Scholar). They undergo multiple cycles of regenerative, mostly asymmetric, cell divisions, leading to the generation of diverse types of neurons while maintaining a pool of progenitors (Miyata et al., 2004Miyata T. Kawaguchi A. Saito K. Kawano M. Muto T. Ogawa M. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells.Development. 2004; 131: 3133-3145Crossref PubMed Scopus (576) Google Scholar, Noctor et al., 2004Noctor S.C. Martínez-Cerdeño V. Ivic L. Kriegstein A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases.Nat. Neurosci. 2004; 7: 136-144Crossref PubMed Scopus (1666) Google Scholar). In humans, RG cells go through an increased number of such cycles when compared with non human-primate or mouse (Geschwind and Rakic, 2013Geschwind D.H. Rakic P. Cortical evolution: judge the brain by its cover.Neuron. 2013; 80: 633-647Abstract Full Text Full Text PDF PubMed Scopus (335) Google Scholar, Lukaszewicz et al., 2005Lukaszewicz A. Savatier P. Cortay V. Giroud P. Huissoud C. Berland M. Kennedy H. Dehay C. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex.Neuron. 2005; 47: 353-364Abstract Full Text Full Text PDF PubMed Scopus (246) Google Scholar). Timing of neurogenesis is likely linked to species-specific properties intrinsic to RG cells, as it is conserved during in vitro corticogenesis from human, non-human primate, or mouse pluripotent stem cells (Espuny-Camacho et al., 2013Espuny-Camacho I. Michelsen K.A. Gall D. Linaro D. Hasche A. Bonnefont J. Bali C. Orduz D. Bilheu A. Herpoel A. et al.Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo.Neuron. 2013; 77: 440-456Abstract Full Text Full Text PDF PubMed Scopus (374) Google Scholar, Otani et al., 2016Otani T. Marchetto M.C. Gage F.H. Simons B.D. Livesey F.J. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.Cell Stem Cell. 2016; 18: 467-480Abstract Full Text Full Text PDF PubMed Scopus (194) Google Scholar, Suzuki and Vanderhaeghen, 2015Suzuki I.K. Vanderhaeghen P. Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells.Development. 2015; 142: 3138-3150Crossref PubMed Scopus (75) Google Scholar). Species differences in cortical neurogenic output are also linked to the expansion of specific classes of progenitors in the primate and human cortex, in particular the “outer” radial glial (oRG) cells, located in the outer-subventricular zone (oSVZ) (Fietz et al., 2010Fietz S.A. Kelava I. Vogt J. Wilsch-Bräuninger M. Stenzel D. Fish J.L. Corbeil D. Riehn A. Distler W. Nitsch R. Huttner W.B. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling.Nat. Neurosci. 2010; 13: 690-699Crossref PubMed Scopus (571) Google Scholar, Hansen et al., 2010Hansen D.V. Lui J.H. Parker P.R. Kriegstein A.R. Neurogenic radial glia in the outer subventricular zone of human neocortex.Nature. 2010; 464: 554-561Crossref PubMed Scopus (895) Google Scholar, Reillo et al., 2011Reillo I. de Juan Romero C. García-Cabezas M.A. Borrell V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex.Cereb. Cortex. 2011; 21: 1674-1694Crossref PubMed Scopus (433) Google Scholar). The oRG cells emerge from RG cells later in embryogenesis, and their progeny tend to undergo multiple rounds of divisions, thus providing an additional key mechanism of increased neuronal output. Many highly conserved signaling pathways are required for the control of cortical neurogenesis (Tiberi et al., 2012bTiberi L. Vanderhaeghen P. van den Ameele J. Cortical neurogenesis and morphogens: diversity of cues, sources and functions.Curr. Opin. Cell Biol. 2012; 24: 269-276Crossref PubMed Scopus (73) Google Scholar), which display species-specific properties that likely contribute to divergence of cortical neurogenesis (Boyd et al., 2015Boyd J.L. Skove S.L. Rouanet J.P. Pilaz L.J. Bepler T. Gordân R. Wray G.A. Silver D.L. Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex.Curr. Biol. 2015; 25: 772-779Abstract Full Text Full Text PDF PubMed Scopus (154) Google Scholar, Lui et al., 2014Lui J.H. Nowakowski T.J. Pollen A.A. Javaherian A. Kriegstein A.R. Oldham M.C. Radial glia require PDGFD-PDGFRβ signalling in human but not mouse neocortex.Nature. 2014; 515: 264-268Crossref PubMed Scopus (114) Google Scholar, Rani et al., 2016Rani N. Nowakowski T.J. Zhou H. Godshalk S.E. Lisi V. Kriegstein A.R. Kosik K.S. A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA.Neuron. 2016; 90: 1174-1188Abstract Full Text Full Text PDF PubMed Scopus (101) Google Scholar, Wang et al., 2016Wang L. Hou S. Han Y.G. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex.Nat. Neurosci. 2016; 19: 888-896Crossref PubMed Scopus (113) Google Scholar), but overall the molecular basis of species-specific mechanisms of human corticogenesis remain unknown. Comparative analyses of mammalian genomes led to the identification of many human-specific signatures of divergence, which might underlie some aspects of human brain evolution (Enard, 2016Enard W. The Molecular Basis of Human Brain Evolution.Curr. Biol. 2016; 26: R1109-R1117Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar, Hill and Walsh, 2005Hill R.S. Walsh C.A. Molecular insights into human brain evolution.Nature. 2005; 437: 64-67Crossref PubMed Scopus (160) Google Scholar, O’Bleness et al., 2012O’Bleness M. Searles V.B. Varki A. Gagneux P. Sikela J.M. Evolution of genetic and genomic features unique to the human lineage.Nat. Rev. Genet. 2012; 13: 853-866Crossref PubMed Scopus (101) Google Scholar, Varki et al., 2008Varki A. Geschwind D.H. Eichler E.E. Explaining human uniqueness: genome interactions with environment, behaviour and culture.Nat. Rev. Genet. 2008; 9: 749-763Crossref PubMed Scopus (133) Google Scholar). One major driver of phenotypic evolution relates to changes in the mechanisms controlling gene expression (Carroll, 2003Carroll S.B. Genetics and the making of Homo sapiens.Nature. 2003; 422: 849-857Crossref PubMed Scopus (224) Google Scholar). Indeed, transcriptome analyses have revealed divergent gene expression patterns in the developing human brain (Johnson et al., 2009Johnson M.B. Kawasawa Y.I. Mason C.E. Krsnik Z. Coppola G. Bogdanović D. Geschwind D.H. Mane S.M. State M.W. Sestan N. Functional and evolutionary insights into human brain development through global transcriptome analysis.Neuron. 2009; 62: 494-509Abstract Full Text Full Text PDF PubMed Scopus (450) Google Scholar, Khaitovich et al., 2006Khaitovich P. Enard W. Lachmann M. Pääbo S. Evolution of primate gene expression.Nat. Rev. Genet. 2006; 7: 693-702Crossref PubMed Scopus (232) Google Scholar, Lambert et al., 2011Lambert N. Lambot M.A. Bilheu A. Albert V. Englert Y. Libert F. Noel J.C. Sotiriou C. Holloway A.K. Pollard K.S. et al.Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.PLoS ONE. 2011; 6: e17753Crossref PubMed Scopus (57) Google Scholar, Mora-Bermúdez et al., 2016Mora-Bermúdez F. Badsha F. Kanton S. Camp J.G. Vernot B. Köhler K. Voigt B. Okita K. Maricic T. He Z. et al.Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development.eLife. 2016; 5: e18683Crossref PubMed Scopus (141) Google Scholar, Nord et al., 2015Nord A.S. Pattabiraman K. Visel A. Rubenstein J.L.R. Genomic perspectives of transcriptional regulation in forebrain development.Neuron. 2015; 85: 27-47Abstract Full Text Full Text PDF PubMed Scopus (104) Google Scholar, Sun et al., 2005Sun T. Patoine C. Abu-Khalil A. Visvader J. Sum E. Cherry T.J. Orkin S.H. Geschwind D.H. Walsh C.A. Early asymmetry of gene transcription in embryonic human left and right cerebral cortex.Science. 2005; 308: 1794-1798Crossref PubMed Scopus (290) Google Scholar). Studies focused on the evolution of non-coding regulatory elements have revealed structural changes that could lead to human brain-specific patterns of gene expression (Ataman et al., 2016Ataman B. Boulting G.L. Harmin D.A. Yang M.G. Baker-Salisbury M. Yap E.L. Malik A.N. Mei K. Rubin A.A. Spiegel I. et al.Evolution of Osteocrin as an activity-regulated factor in the primate brain.Nature. 2016; 539: 242-247Crossref PubMed Scopus (72) Google Scholar, Boyd et al., 2015Boyd J.L. Skove S.L. Rouanet J.P. Pilaz L.J. Bepler T. Gordân R. Wray G.A. Silver D.L. Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex.Curr. Biol. 2015; 25: 772-779Abstract Full Text Full Text PDF PubMed Scopus (154) Google Scholar, Doan et al., 2016Doan R.N. Bae B.I. Cubelos B. Chang C. Hossain A.A. Al-Saad S. Mukaddes N.M. Oner O. Al-Saffar M. Balkhy S. et al.Homozygosity Mapping Consortium for AutismMutations in Human Accelerated Regions Disrupt Cognition and Social Behavior.Cell. 2016; 167: 341-354.e12Abstract Full Text Full Text PDF PubMed Scopus (140) Google Scholar, Pollard et al., 2006Pollard K.S. Salama S.R. Lambert N. Lambot M.A. Coppens S. Pedersen J.S. Katzman S. King B. Onodera C. Siepel A. et al.An RNA gene expressed during cortical development evolved rapidly in humans.Nature. 2006; 443: 167-172Crossref PubMed Scopus (702) Google Scholar, Prabhakar et al., 2006Prabhakar S. Noonan J.P. Pääbo S. Rubin E.M. Accelerated evolution of conserved noncoding sequences in humans.Science. 2006; 314: 786Crossref PubMed Scopus (298) Google Scholar, Reilly et al., 2015Reilly S.K. Yin J. Ayoub A.E. Emera D. Leng J. Cotney J. Sarro R. Rakic P. Noonan J.P. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis.Science. 2015; 347: 1155-1159Crossref PubMed Scopus (151) Google Scholar), and changes at the level of coding sequences have also been proposed to contribute to human brain evolution (Enard et al., 2002Enard W. Przeworski M. Fisher S.E. Lai C.S. Wiebe V. Kitano T. Monaco A.P. Pääbo S. Molecular evolution of FOXP2, a gene involved in speech and language.Nature. 2002; 418: 869-872Crossref PubMed Scopus (1034) Google Scholar). Another important driver of evolution is the emergence of novel genes (Ohno, 1999Ohno S. Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999.Semin. Cell Dev. Biol. 1999; 10: 517-522Crossref PubMed Scopus (261) Google Scholar). Gene duplication (Kaessmann, 2010Kaessmann H. Origins, evolution, and phenotypic impact of new genes.Genome Res. 2010; 20: 1313-1326Crossref PubMed Scopus (500) Google Scholar) is one of the primary forces by which novel gene function can arise, where an “ancestral” gene is duplicated into related “paralog” genes (Dennis and Eichler, 2016Dennis M.Y. Eichler E.E. Human adaptation and evolution by segmental duplication.Curr. Opin. Genet. Dev. 2016; 41: 44-52Crossref PubMed Scopus (91) Google Scholar, O’Bleness et al., 2012O’Bleness M. Searles V.B. Varki A. Gagneux P. Sikela J.M. Evolution of genetic and genomic features unique to the human lineage.Nat. Rev. Genet. 2012; 13: 853-866Crossref PubMed Scopus (101) Google Scholar, Varki et al., 2008Varki A. Geschwind D.H. Eichler E.E. Explaining human uniqueness: genome interactions with environment, behaviour and culture.Nat. Rev. Genet. 2008; 9: 749-763Crossref PubMed Scopus (133) Google Scholar). Particularly interesting are hominid-specific duplicated (HS) genes, which arose from segmental DNA-mediated gene duplications specifically in the hominid and/or human genomes (Fortna et al., 2004Fortna A. Kim Y. MacLaren E. Marshall K. Hahn G. Meltesen L. Brenton M. Hink R. Burgers S. Hernandez-Boussard T. et al.Lineage-specific gene duplication and loss in human and great ape evolution.PLoS Biol. 2004; 2: E207Crossref PubMed Scopus (229) Google Scholar, Goidts et al., 2006Goidts V. Cooper D.N. Armengol L. Schempp W. Conroy J. Estivill X. Nowak N. Hameister H. Kehrer-Sawatzki H. Complex patterns of copy number variation at sites of segmental duplications: an important category of structural variation in the human genome.Hum. Genet. 2006; 120: 270-284Crossref PubMed Scopus (55) Google Scholar, Marques-Bonet et al., 2009Marques-Bonet T. Kidd J.M. Ventura M. Graves T.A. Cheng Z. Hillier L.W. Jiang Z. Baker C. Malfavon-Borja R. Fulton L.A. et al.A burst of segmental duplications in the genome of the African great ape ancestor.Nature. 2009; 457: 877-881Crossref PubMed Scopus (167) Google Scholar, Sudmant et al., 2010Sudmant P.H. Kitzman J.O. Antonacci F. Alkan C. Malig M. Tsalenko A. Sampas N. Bruhn L. Shendure J. Eichler E.E. 1000 Genomes ProjectDiversity of human copy number variation and multicopy genes.Science. 2010; 330: 641-646Crossref PubMed Scopus (487) Google Scholar). Most of them have emerged recently in the human lineage after its separation from the common ancestor to great apes, during the period of rapid expansion of the cerebral cortex. They could inherently lead to considerable gene diversification and modification and thereby may have contributed to the rapid emergence of human-specific neural traits. The role of the vast majority of the HS genes remains unknown, and many could be non-functional or redundant with their ancestral form. Recent segmental duplications are enriched for gene families with potential roles in neural development (Fortna et al., 2004Fortna A. Kim Y. MacLaren E. Marshall K. Hahn G. Meltesen L. Brenton M. Hink R. Burgers S. Hernandez-Boussard T. et al.Lineage-specific gene duplication and loss in human and great ape evolution.PLoS Biol. 2004; 2: E207Crossref PubMed Scopus (229) Google Scholar, Sudmant et al., 2010Sudmant P.H. Kitzman J.O. Antonacci F. Alkan C. Malig M. Tsalenko A. Sampas N. Bruhn L. Shendure J. Eichler E.E. 1000 Genomes ProjectDiversity of human copy number variation and multicopy genes.Science. 2010; 330: 641-646Crossref PubMed Scopus (487) Google Scholar, Zhang et al., 2011Zhang Y.E. Landback P. Vibranovski M.D. Long M. Accelerated recruitment of new brain development genes into the human genome.PLoS Biol. 2011; 9: e1001179Crossref PubMed Scopus (110) Google Scholar), and many are found in recombination “hotspots” displaying copy-number variation (CNV) linked to neurodevelopmental disorders (Coe et al., 2012Coe B.P. Girirajan S. Eichler E.E. The genetic variability and commonality of neurodevelopmental disease.Am. J. Med. Genet. C. Semin. Med. Genet. 2012; 160C: 118-129Crossref PubMed Scopus (90) Google Scholar, Mefford and Eichler, 2009Mefford H.C. Eichler E.E. Duplication hotspots, rare genomic disorders, and common disease.Curr. Opin. Genet. Dev. 2009; 19: 196-204Crossref PubMed Scopus (168) Google Scholar, Nuttle et al., 2016Nuttle X. Giannuzzi G. Duyzend M.H. Schraiber J.G. Narvaiza I. Sudmant P.H. Penn O. Chiatante G. Malig M. Huddleston J. et al.Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility.Nature. 2016; 536: 205-209Crossref PubMed Scopus (76) Google Scholar, Varki et al., 2008Varki A. Geschwind D.H. Eichler E.E. Explaining human uniqueness: genome interactions with environment, behaviour and culture.Nat. Rev. Genet. 2008; 9: 749-763Crossref PubMed Scopus (133) Google Scholar). Finally, recent studies have started to provide more direct evidence for the functional importance of HS gene duplications, including SRGAP2, ARHGAP11, and TBC1D3 (Charrier et al., 2012Charrier C. Joshi K. Coutinho-Budd J. Kim J.E. Lambert N. de Marchena J. Jin W.L. Vanderhaeghen P. Ghosh A. Sassa T. Polleux F. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation.Cell. 2012; 149: 923-935Abstract Full Text Full Text PDF PubMed Scopus (284) Google Scholar, Florio et al., 2015Florio M. Albert M. Taverna E. Namba T. Brandl H. Lewitus E. Haffner C. Sykes A. Wong F.K. Peters J. et al.Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion.Science. 2015; 347: 1465-1470Crossref PubMed Scopus (370) Google Scholar, Ju et al., 2016Ju X.C. Hou Q.Q. Sheng A.L. Wu K.Y. Zhou Y. Jin Y. Wen T. Yang Z. Wang X. Luo Z.G. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice.eLife. 2016; 5: e18197Crossref PubMed Scopus (85) Google Scholar). These provide the first examples of HS gene duplications that may be linked to human cortex evolution, but it remains unclear how many and which HS genes are actually involved in human corticogenesis. One of the roadblocks in identifying candidate HS genes is the difficulty in distinguishing the expression of mRNA expressed from the ancestral gene or the HS paralogs, as their degree of conservation is usually extremely high (Sudmant et al., 2010Sudmant P.H. Kitzman J.O. Antonacci F. Alkan C. Malig M. Tsalenko A. Sampas N. Bruhn L. Shendure J. Eichler E.E. 1000 Genomes ProjectDiversity of human copy number variation and multicopy genes.Science. 2010; 330: 641-646Crossref PubMed Scopus (487) Google Scholar). Here, we used tailored RNA sequencing (RNA-seq) analysis aimed at specific and sensitive detection of HS gene expression and thus identified a specific repertoire of dozens of HS duplicated genes that display robust and dynamic expression during human fetal corticogenesis. Among them we discovered NOTCH2NL, human-specific paralogs of the NOTCH2 receptor, which stood out for their ability to promote cortical progenitor maintenance. Functional analyses revealed that NOTCH2NL can expand human cortical progenitors and increase their neuronal output at the clonal level through cell-autonomous activation of the Notch pathway. Previous work has identified dozens of HS gene families containing genes duplicated in the hominid and human lineage (Dennis et al., 2017Dennis M.Y. Harshman L. Nelson B.J. Penn O. Cantsilieris S. Huddleston J. Antonacci F. Penewit K. Denman L. Raja A. The evolution and population diversity of human-specific segmental duplications.Nature Ecology & Evolution. 2017; 1https://doi.org/10.1038/s41559-016-0069Crossref Scopus (75) Google Scholar, Dumas et al., 2007Dumas L. Kim Y.H. Karimpour-Fard A. Cox M. Hopkins J. Pollack J.R. Sikela J.M. Gene copy number variation spanning 60 million years of human and primate evolution.Genome Res. 2007; 17: 1266-1277Crossref PubMed Scopus (126) Google Scholar, Fortna et al., 2004Fortna A. Kim Y. MacLaren E. Marshall K. Hahn G. Meltesen L. Brenton M. Hink R. Burgers S. Hernandez-Boussard T. et al.Lineage-specific gene duplication and loss in human and great ape evolution.PLoS Biol. 2004; 2: E207Crossref PubMed Scopus (229) Google Scholar, Sudmant et al., 2010Sudmant P.H. Kitzman J.O. Antonacci F. Alkan C. Malig M. Tsalenko A. Sampas N. Bruhn L. Shendure J. Eichler E.E. 1000 Genomes ProjectDiversity of human copy number variation and multicopy genes.Science. 2010; 330: 641-646Crossref PubMed Scopus (487) Google Scholar), but very little information is available on their expression patterns. This is due to the difficulty to determine their expression level with conventional methods, given the high sequence similarity between HS paralogs of the same family. We first sought to determine, for each HS gene family, whether and how ancestral and paralog genes are expressed in the human developing cortex. We performed deep sequencing of RNA extracted from human fetal cortex at key stages of cortical neurogenesis (from 7 to 21 gestational weeks [GW]). For the later-stage samples, we performed microdissection to discriminate specific regions of the cortex (frontal to occipital). For the parietal area, we further microdissected the cortical plate (CP) and underlying domains of the cortical wall (non-CP, containing mostly oSVZ and VZ germinal zones) to isolate compartments enriched in neural progenitors versus postmitotic neurons. To maximize the sensitivity and specificity of HS gene detection, we selected the libraries for cDNA fragments of 350–700 bp and sequenced them with a 2 × 151 bp paired-ends protocol (Figure S1A). Since HS duplications are recent evolutionary events, paralogs within each family are highly similar, potentially confusing the mapping of reads originating from individual paralogs and estimates of their levels of expression (Figure S1B). Standard annotations on reference genomes are also discordant for HS genes. We therefore manually curated gene structures for these genes whenever possible (Table S1) and developed a computational pipeline correcting the expression estimates of closely related paralogs for mapping errors (Figures S1C and S1D; STAR Methods). We focused on gene duplications previously described in the human genome (Sudmant et al., 2010Sudmant P.H. Kitzman J.O. Antonacci F. Alkan C. Malig M. Tsalenko A. Sampas N. Bruhn L. Shendure J. Eichler E.E. 1000 Genomes ProjectDiversity of human copy number variation and multicopy genes.Science. 2010; 330: 641-646Crossref PubMed Scopus (487) Google Scholar) followed by homology searches at the genomic and transcript levels (Table S2). The distribution of gene expression values for HS genes was similar to that of all genes in the human reference genome (Figure 1A). We selected HS genes based on their absolute levels of expression above a defined threshold, 5 fragments per kilobase million (FPKM), corresponding to the minimal level of a set of 60 well-defined marker genes of corticogenesis (Figure 1A). We then selected the gene families where at least two paralogs, typically the ancestor and at least one HS paralog, were expressed above the threshold (Figure 1B). This selection led to a short list of 68 genes distributed among 24 gene families, displaying robust and dynamic expression during human corticogenesis (Figure 1B; Table S2). About half of the genes were preferentially expressed in progenitors and/or early stages, and fewer of them in neuronal compartment and/or late stages of corticogenesis (Figure 1C). Analysis of predicted coding sequences revealed that 51 HS genes (including 18 potential ancestor genes and 35 potentially unique to hominid and human genomes) display an open reading frame (ORF) that was overall conserved but distinct between paralogs of the same family. For 17 HS genes, no reliable ORF could be detected, indicating potential pseudogenization or function as non-coding RNA (Table S2). Among the HS genes that have been studied so far in the context of cortical development, the screen identified SRGAP2 family genes, but neither ARHGAP11 nor TBC1D3 as the expression of ARHGAP11B was below" @default.
- W2805557900 created "2018-06-13" @default.
- W2805557900 creator A5002062661 @default.
- W2805557900 creator A5004114068 @default.
- W2805557900 creator A5009797000 @default.
- W2805557900 creator A5009999392 @default.
- W2805557900 creator A5019413218 @default.
- W2805557900 creator A5023843176 @default.
- W2805557900 creator A5026331525 @default.
- W2805557900 creator A5027786638 @default.
- W2805557900 creator A5032575236 @default.
- W2805557900 creator A5040047992 @default.
- W2805557900 creator A5047726602 @default.
- W2805557900 creator A5088926439 @default.
- W2805557900 date "2018-05-01" @default.
- W2805557900 modified "2023-10-18" @default.
- W2805557900 title "Human-Specific NOTCH2NL Genes Expand Cortical Neurogenesis through Delta/Notch Regulation" @default.
- W2805557900 cites W1208845046 @default.
- W2805557900 cites W1573111276 @default.
- W2805557900 cites W1911595652 @default.
- W2805557900 cites W1972968697 @default.
- W2805557900 cites W1978937475 @default.
- W2805557900 cites W1981369048 @default.
- W2805557900 cites W1981563641 @default.
- W2805557900 cites W1983656465 @default.
- W2805557900 cites W1985911270 @default.
- W2805557900 cites W1997801717 @default.
- W2805557900 cites W2000345419 @default.
- W2805557900 cites W2005276393 @default.
- W2805557900 cites W2005765981 @default.
- W2805557900 cites W2008252053 @default.
- W2805557900 cites W2010852678 @default.
- W2805557900 cites W2010994321 @default.
- W2805557900 cites W2013976859 @default.
- W2805557900 cites W2018738048 @default.
- W2805557900 cites W2020102616 @default.
- W2805557900 cites W2021804487 @default.
- W2805557900 cites W2025187874 @default.
- W2805557900 cites W2028776222 @default.
- W2805557900 cites W2043854809 @default.
- W2805557900 cites W2045044865 @default.
- W2805557900 cites W2047428960 @default.
- W2805557900 cites W2049734059 @default.
- W2805557900 cites W2050224211 @default.
- W2805557900 cites W2053433605 @default.
- W2805557900 cites W2055468924 @default.
- W2805557900 cites W2056213424 @default.
- W2805557900 cites W2057774973 @default.
- W2805557900 cites W2060256600 @default.
- W2805557900 cites W2060941026 @default.
- W2805557900 cites W2068385770 @default.
- W2805557900 cites W2072710787 @default.
- W2805557900 cites W2072966096 @default.
- W2805557900 cites W2077016335 @default.
- W2805557900 cites W2080619964 @default.
- W2805557900 cites W2085420625 @default.
- W2805557900 cites W2086943348 @default.
- W2805557900 cites W2088814620 @default.
- W2805557900 cites W2090162743 @default.
- W2805557900 cites W2091203297 @default.
- W2805557900 cites W2092682926 @default.
- W2805557900 cites W2093108299 @default.
- W2805557900 cites W2098380802 @default.
- W2805557900 cites W2099451735 @default.
- W2805557900 cites W2100305481 @default.
- W2805557900 cites W2107356238 @default.
- W2805557900 cites W2107934935 @default.
- W2805557900 cites W2110287546 @default.
- W2805557900 cites W2113254344 @default.
- W2805557900 cites W2115612418 @default.
- W2805557900 cites W2124560890 @default.
- W2805557900 cites W2124843892 @default.
- W2805557900 cites W2126527896 @default.
- W2805557900 cites W2127220436 @default.
- W2805557900 cites W2129828870 @default.
- W2805557900 cites W2134526812 @default.
- W2805557900 cites W2142527842 @default.
- W2805557900 cites W2146120203 @default.
- W2805557900 cites W2152156139 @default.
- W2805557900 cites W2152294954 @default.
- W2805557900 cites W2154759645 @default.
- W2805557900 cites W2156937336 @default.
- W2805557900 cites W2159884201 @default.
- W2805557900 cites W2160127145 @default.
- W2805557900 cites W2162566198 @default.
- W2805557900 cites W2163809592 @default.
- W2805557900 cites W2163870773 @default.
- W2805557900 cites W2167181815 @default.
- W2805557900 cites W2167279371 @default.
- W2805557900 cites W2169456326 @default.
- W2805557900 cites W2169786878 @default.
- W2805557900 cites W2172266256 @default.
- W2805557900 cites W2330595735 @default.
- W2805557900 cites W2405973985 @default.
- W2805557900 cites W2411874306 @default.
- W2805557900 cites W2416299331 @default.
- W2805557900 cites W2480919886 @default.
- W2805557900 cites W2507829835 @default.