Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805587876> ?p ?o ?g. }
- W2805587876 endingPage "e185" @default.
- W2805587876 startingPage "e185" @default.
- W2805587876 abstract "Enormous amounts of data are recorded routinely in health care as part of the care process, primarily for managing individual patient care. There are significant opportunities to use these data for other purposes, many of which would contribute to establishing a learning health system. This is particularly true for data recorded in primary care settings, as in many countries, these are the first place patients turn to for most health problems.In this paper, we discuss whether data that are recorded routinely as part of the health care process in primary care are actually fit to use for other purposes such as research and quality of health care indicators, how the original purpose may affect the extent to which the data are fit for another purpose, and the mechanisms behind these effects. In doing so, we want to identify possible sources of bias that are relevant for the use and reuse of these type of data.This paper is based on the authors' experience as users of electronic health records data, as general practitioners, health informatics experts, and health services researchers. It is a product of the discussions they had during the Translational Research and Patient Safety in Europe (TRANSFoRm) project, which was funded by the European Commission and sought to develop, pilot, and evaluate a core information architecture for the learning health system in Europe, based on primary care electronic health records.We first describe the different stages in the processing of electronic health record data, as well as the different purposes for which these data are used. Given the different data processing steps and purposes, we then discuss the possible mechanisms for each individual data processing step that can generate biased outcomes. We identified 13 possible sources of bias. Four of them are related to the organization of a health care system, whereas some are of a more technical nature.There are a substantial number of possible sources of bias; very little is known about the size and direction of their impact. However, anyone that uses or reuses data that were recorded as part of the health care process (such as researchers and clinicians) should be aware of the associated data collection process and environmental influences that can affect the quality of the data. Our stepwise, actor- and purpose-oriented approach may help to identify these possible sources of bias. Unless data quality issues are better understood and unless adequate controls are embedded throughout the data lifecycle, data-driven health care will not live up to its expectations. We need a data quality research agenda to devise the appropriate instruments needed to assess the magnitude of each of the possible sources of bias, and then start measuring their impact. The possible sources of bias described in this paper serve as a starting point for this research agenda." @default.
- W2805587876 created "2018-06-13" @default.
- W2805587876 creator A5020676107 @default.
- W2805587876 creator A5035648750 @default.
- W2805587876 creator A5038279155 @default.
- W2805587876 creator A5063234905 @default.
- W2805587876 date "2018-05-29" @default.
- W2805587876 modified "2023-10-11" @default.
- W2805587876 title "Possible Sources of Bias in Primary Care Electronic Health Record Data Use and Reuse" @default.
- W2805587876 cites W1535494853 @default.
- W2805587876 cites W1686401129 @default.
- W2805587876 cites W1821102625 @default.
- W2805587876 cites W1855722232 @default.
- W2805587876 cites W1968533128 @default.
- W2805587876 cites W1974893770 @default.
- W2805587876 cites W1995899261 @default.
- W2805587876 cites W2012578357 @default.
- W2805587876 cites W2018025378 @default.
- W2805587876 cites W2046888599 @default.
- W2805587876 cites W2082560542 @default.
- W2805587876 cites W2086439067 @default.
- W2805587876 cites W2091865253 @default.
- W2805587876 cites W2096202170 @default.
- W2805587876 cites W2097974960 @default.
- W2805587876 cites W2103950824 @default.
- W2805587876 cites W2108101374 @default.
- W2805587876 cites W2108893696 @default.
- W2805587876 cites W2110271384 @default.
- W2805587876 cites W2111878237 @default.
- W2805587876 cites W2113772619 @default.
- W2805587876 cites W2114047279 @default.
- W2805587876 cites W2122019985 @default.
- W2805587876 cites W2124658309 @default.
- W2805587876 cites W2124972954 @default.
- W2805587876 cites W2128867867 @default.
- W2805587876 cites W2135703887 @default.
- W2805587876 cites W2136631966 @default.
- W2805587876 cites W2137564203 @default.
- W2805587876 cites W2137767404 @default.
- W2805587876 cites W2147548631 @default.
- W2805587876 cites W2148554370 @default.
- W2805587876 cites W2151860293 @default.
- W2805587876 cites W2159555260 @default.
- W2805587876 cites W2172145845 @default.
- W2805587876 cites W2175745516 @default.
- W2805587876 cites W2180769951 @default.
- W2805587876 cites W2283235073 @default.
- W2805587876 cites W2345646583 @default.
- W2805587876 cites W2394953419 @default.
- W2805587876 cites W2395224217 @default.
- W2805587876 cites W2408087945 @default.
- W2805587876 cites W2414369732 @default.
- W2805587876 cites W2505473729 @default.
- W2805587876 cites W2511425506 @default.
- W2805587876 cites W2518450368 @default.
- W2805587876 cites W2527654804 @default.
- W2805587876 cites W2543818161 @default.
- W2805587876 cites W2551253754 @default.
- W2805587876 cites W2581179626 @default.
- W2805587876 cites W2592729202 @default.
- W2805587876 cites W2768771876 @default.
- W2805587876 cites W2775285716 @default.
- W2805587876 cites W31350919 @default.
- W2805587876 cites W74774116 @default.
- W2805587876 cites W769184995 @default.
- W2805587876 cites W196145869 @default.
- W2805587876 cites W1987406862 @default.
- W2805587876 doi "https://doi.org/10.2196/jmir.9134" @default.
- W2805587876 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5997930" @default.
- W2805587876 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29844010" @default.
- W2805587876 hasPublicationYear "2018" @default.
- W2805587876 type Work @default.
- W2805587876 sameAs 2805587876 @default.
- W2805587876 citedByCount "149" @default.
- W2805587876 countsByYear W28055878762018 @default.
- W2805587876 countsByYear W28055878762019 @default.
- W2805587876 countsByYear W28055878762020 @default.
- W2805587876 countsByYear W28055878762021 @default.
- W2805587876 countsByYear W28055878762022 @default.
- W2805587876 countsByYear W28055878762023 @default.
- W2805587876 crossrefType "journal-article" @default.
- W2805587876 hasAuthorship W2805587876A5020676107 @default.
- W2805587876 hasAuthorship W2805587876A5035648750 @default.
- W2805587876 hasAuthorship W2805587876A5038279155 @default.
- W2805587876 hasAuthorship W2805587876A5063234905 @default.
- W2805587876 hasBestOaLocation W28055878761 @default.
- W2805587876 hasConcept C106476913 @default.
- W2805587876 hasConcept C111472728 @default.
- W2805587876 hasConcept C127413603 @default.
- W2805587876 hasConcept C138816342 @default.
- W2805587876 hasConcept C138885662 @default.
- W2805587876 hasConcept C145642194 @default.
- W2805587876 hasConcept C147268084 @default.
- W2805587876 hasConcept C159110408 @default.
- W2805587876 hasConcept C160735492 @default.
- W2805587876 hasConcept C17744445 @default.
- W2805587876 hasConcept C191630685 @default.
- W2805587876 hasConcept C199539241 @default.