Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805606728> ?p ?o ?g. }
- W2805606728 endingPage "271" @default.
- W2805606728 startingPage "253" @default.
- W2805606728 abstract "Dye and heavy metal pollutants present in the aquatic and terrestrial ecosystem are hazardous to the environment as well as the human health due to their toxicity even at the lower concentration. A significant volume of dye and heavy metals released in industrial effluents, i.e., textile, tannery, electroplating, mines, and dyes, are polluting the environment in an inorganic or organic form. Several strategies have been applied for the removal of dyes and to detoxify heavy metals using the techniques, viz., landfill, incineration, solvent extraction, recycling, filtration, evaporation, and chemical precipitation. However the average yield, high-cost, toxic by-product and the production of secondary environment pollutants limit their application. Biosorption is an alternative approach for the bioremediation of the dyes and heavy metals from the environment using microbial biomass either live or dead. Biosorption of dyes and heavy metals by using potential fungal biomass is more feasible compared to the bacteria and yeast due to efficient capability of dye and heavy metal absorption, intracellular metal immobilization, bioaccumulation, and presence of the enzymes that helps in conversion of metals into their oxides. Fungal spp., i.e., Aspergillus, Trichoderma, Verticillium, Fusarium, and Penicillium, are well known for their accessibility as biosorbent. Biosorption mechanism involved two different modes for the uptake of dyes and heavy metals from the environment which are fungal cell wall structure and cell metabolism. Various physiochemical parameters play important role in the biosorption process, i.e., pH, temperature, biosorption rate, initial concentration of dye/heavy metal, metal speciation, dye/heavy metal solubility and form, binding site of the metal, and contact time. Fungal biomass concentration, cell wall composition, extracellular product formation, biomass dosage, and dissolved oxygen are some of the environmental factors that influence dye and heavy metal sorption efficiency of the fungal biomass during the process. Chemisorption, adsorption-coupled reduction process, ion exchange resins, metal precipitation, and electrostatic interaction between pollutants and fungal biomass are the key components for the biosorption process through fungal biomass. Equilibrium isotherm equations are used to describe the relationship between dyes or metal ions and biosorbent using different models to obtain experimental adsorption data. Two-parameter models Langmuir, Freundlich, Temkin, Dubinin- Radushkevich, and Flory- Huggins and three-parameter models Sips, Khan, Toth, Redlich- Peterson, and Radke-Prausnitz provide details about adsorbent’s surface properties, affinities, and adsorption dynamics. Metal recovered from the fungal biomass reduces the need of mining and extraction/purification cost. Regeneration of the fungal biomass enhances the biosorption capacity after a number of cycles. Biosorption can be emerged as cost-effective and nontoxic and as green approach for the removal and recovery of dyes and heavy metals from industrial effluents." @default.
- W2805606728 created "2018-06-13" @default.
- W2805606728 creator A5030667472 @default.
- W2805606728 creator A5039064542 @default.
- W2805606728 date "2018-01-01" @default.
- W2805606728 modified "2023-10-06" @default.
- W2805606728 title "Biosorption of Dye and Heavy Metal Pollutants by Fungal Biomass: A Sustainable Approach" @default.
- W2805606728 cites W1964451646 @default.
- W2805606728 cites W1965843213 @default.
- W2805606728 cites W1967626459 @default.
- W2805606728 cites W1970246096 @default.
- W2805606728 cites W1973452617 @default.
- W2805606728 cites W1976375612 @default.
- W2805606728 cites W1976642731 @default.
- W2805606728 cites W1978546318 @default.
- W2805606728 cites W1981110251 @default.
- W2805606728 cites W1983391943 @default.
- W2805606728 cites W1984631611 @default.
- W2805606728 cites W1987444757 @default.
- W2805606728 cites W1990216601 @default.
- W2805606728 cites W1990790314 @default.
- W2805606728 cites W1990935997 @default.
- W2805606728 cites W1992985984 @default.
- W2805606728 cites W1993391123 @default.
- W2805606728 cites W2002555817 @default.
- W2805606728 cites W2005758983 @default.
- W2805606728 cites W2012418751 @default.
- W2805606728 cites W2022076990 @default.
- W2805606728 cites W2024098400 @default.
- W2805606728 cites W2027050084 @default.
- W2805606728 cites W2031728439 @default.
- W2805606728 cites W2034924602 @default.
- W2805606728 cites W2035214730 @default.
- W2805606728 cites W2035532321 @default.
- W2805606728 cites W2040010829 @default.
- W2805606728 cites W2040034164 @default.
- W2805606728 cites W2045027439 @default.
- W2805606728 cites W2050400155 @default.
- W2805606728 cites W2053981111 @default.
- W2805606728 cites W2057933487 @default.
- W2805606728 cites W2059367049 @default.
- W2805606728 cites W2059836826 @default.
- W2805606728 cites W2063430952 @default.
- W2805606728 cites W2069178153 @default.
- W2805606728 cites W2069723237 @default.
- W2805606728 cites W2093286865 @default.
- W2805606728 cites W2095384247 @default.
- W2805606728 cites W2098816403 @default.
- W2805606728 cites W2103474203 @default.
- W2805606728 cites W2136673802 @default.
- W2805606728 cites W2143925304 @default.
- W2805606728 cites W2148428118 @default.
- W2805606728 cites W2151128450 @default.
- W2805606728 cites W2193260946 @default.
- W2805606728 cites W2223258657 @default.
- W2805606728 cites W2225378163 @default.
- W2805606728 cites W2280778873 @default.
- W2805606728 cites W2283346338 @default.
- W2805606728 cites W2296788681 @default.
- W2805606728 cites W2301948711 @default.
- W2805606728 cites W2400641227 @default.
- W2805606728 cites W2407705879 @default.
- W2805606728 cites W2487518233 @default.
- W2805606728 cites W2514392808 @default.
- W2805606728 cites W2527208754 @default.
- W2805606728 cites W2569692335 @default.
- W2805606728 cites W2582357207 @default.
- W2805606728 doi "https://doi.org/10.1007/978-3-319-77386-5_10" @default.
- W2805606728 hasPublicationYear "2018" @default.
- W2805606728 type Work @default.
- W2805606728 sameAs 2805606728 @default.
- W2805606728 citedByCount "2" @default.
- W2805606728 countsByYear W28056067282021 @default.
- W2805606728 countsByYear W28056067282023 @default.
- W2805606728 crossrefType "book-chapter" @default.
- W2805606728 hasAuthorship W2805606728A5030667472 @default.
- W2805606728 hasAuthorship W2805606728A5039064542 @default.
- W2805606728 hasConcept C107872376 @default.
- W2805606728 hasConcept C112570922 @default.
- W2805606728 hasConcept C114260506 @default.
- W2805606728 hasConcept C115540264 @default.
- W2805606728 hasConcept C150394285 @default.
- W2805606728 hasConcept C178790620 @default.
- W2805606728 hasConcept C185592680 @default.
- W2805606728 hasConcept C18903297 @default.
- W2805606728 hasConcept C2124996 @default.
- W2805606728 hasConcept C2776053758 @default.
- W2805606728 hasConcept C2776812703 @default.
- W2805606728 hasConcept C2778302132 @default.
- W2805606728 hasConcept C58445606 @default.
- W2805606728 hasConcept C63797996 @default.
- W2805606728 hasConcept C86803240 @default.
- W2805606728 hasConcept C93765907 @default.
- W2805606728 hasConceptScore W2805606728C107872376 @default.
- W2805606728 hasConceptScore W2805606728C112570922 @default.
- W2805606728 hasConceptScore W2805606728C114260506 @default.
- W2805606728 hasConceptScore W2805606728C115540264 @default.
- W2805606728 hasConceptScore W2805606728C150394285 @default.