Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805658037> ?p ?o ?g. }
- W2805658037 endingPage "388" @default.
- W2805658037 startingPage "377" @default.
- W2805658037 abstract "Abstract As many different 3D volumes could produce the same 2D x‐ray image, inverting this process is challenging. We show that recent deep learning‐based convolutional neural networks can solve this task. As the main challenge in learning is the sheer amount of data created when extending the 2D image into a 3D volume, we suggest firstly to learn a coarse, fixed‐resolution volume which is then fused in a second step with the input x‐ray into a high‐resolution volume. To train and validate our approach we introduce a new dataset that comprises of close to half a million computer‐simulated 2D x‐ray images of 3D volumes scanned from 175 mammalian species. Future applications of our approach include stereoscopic rendering of legacy x‐ray images, re‐rendering of x‐rays including changes of illumination, view pose or geometry. Our evaluation includes comparison to previous tomography work, previous learning methods using our data, a user study and application to a set of real x‐rays." @default.
- W2805658037 created "2018-06-13" @default.
- W2805658037 creator A5061059879 @default.
- W2805658037 creator A5066279452 @default.
- W2805658037 creator A5066691263 @default.
- W2805658037 creator A5084442493 @default.
- W2805658037 date "2018-05-01" @default.
- W2805658037 modified "2023-10-05" @default.
- W2805658037 title "Single-image Tomography: 3D Volumes from 2D Cranial X-Rays" @default.
- W2805658037 cites W1769599646 @default.
- W2805658037 cites W1901129140 @default.
- W2805658037 cites W2013176016 @default.
- W2805658037 cites W2069629287 @default.
- W2805658037 cites W2080461625 @default.
- W2805658037 cites W2081181113 @default.
- W2805658037 cites W2099478163 @default.
- W2805658037 cites W2101675075 @default.
- W2805658037 cites W2123169298 @default.
- W2805658037 cites W2129308920 @default.
- W2805658037 cites W2133665775 @default.
- W2805658037 cites W2138582281 @default.
- W2805658037 cites W2140776656 @default.
- W2805658037 cites W2193045528 @default.
- W2805658037 cites W2272752931 @default.
- W2805658037 cites W2295355433 @default.
- W2805658037 cites W2342277278 @default.
- W2805658037 cites W2444097022 @default.
- W2805658037 cites W2464708700 @default.
- W2805658037 cites W2522924304 @default.
- W2805658037 cites W2525884435 @default.
- W2805658037 cites W2560722161 @default.
- W2805658037 cites W2593035862 @default.
- W2805658037 cites W2603429625 @default.
- W2805658037 cites W2919115771 @default.
- W2805658037 cites W2962731536 @default.
- W2805658037 cites W2963622297 @default.
- W2805658037 cites W2964137676 @default.
- W2805658037 cites W764651262 @default.
- W2805658037 doi "https://doi.org/10.1111/cgf.13369" @default.
- W2805658037 hasPublicationYear "2018" @default.
- W2805658037 type Work @default.
- W2805658037 sameAs 2805658037 @default.
- W2805658037 citedByCount "61" @default.
- W2805658037 countsByYear W28056580372018 @default.
- W2805658037 countsByYear W28056580372019 @default.
- W2805658037 countsByYear W28056580372020 @default.
- W2805658037 countsByYear W28056580372021 @default.
- W2805658037 countsByYear W28056580372022 @default.
- W2805658037 countsByYear W28056580372023 @default.
- W2805658037 crossrefType "journal-article" @default.
- W2805658037 hasAuthorship W2805658037A5061059879 @default.
- W2805658037 hasAuthorship W2805658037A5066279452 @default.
- W2805658037 hasAuthorship W2805658037A5066691263 @default.
- W2805658037 hasAuthorship W2805658037A5084442493 @default.
- W2805658037 hasBestOaLocation W28056580372 @default.
- W2805658037 hasConcept C108583219 @default.
- W2805658037 hasConcept C120665830 @default.
- W2805658037 hasConcept C121332964 @default.
- W2805658037 hasConcept C121684516 @default.
- W2805658037 hasConcept C126057942 @default.
- W2805658037 hasConcept C154945302 @default.
- W2805658037 hasConcept C163716698 @default.
- W2805658037 hasConcept C20556612 @default.
- W2805658037 hasConcept C205649164 @default.
- W2805658037 hasConcept C205711294 @default.
- W2805658037 hasConcept C3020199158 @default.
- W2805658037 hasConcept C30769735 @default.
- W2805658037 hasConcept C31972630 @default.
- W2805658037 hasConcept C36816356 @default.
- W2805658037 hasConcept C41008148 @default.
- W2805658037 hasConcept C58489278 @default.
- W2805658037 hasConcept C62520636 @default.
- W2805658037 hasConcept C62649853 @default.
- W2805658037 hasConcept C81363708 @default.
- W2805658037 hasConceptScore W2805658037C108583219 @default.
- W2805658037 hasConceptScore W2805658037C120665830 @default.
- W2805658037 hasConceptScore W2805658037C121332964 @default.
- W2805658037 hasConceptScore W2805658037C121684516 @default.
- W2805658037 hasConceptScore W2805658037C126057942 @default.
- W2805658037 hasConceptScore W2805658037C154945302 @default.
- W2805658037 hasConceptScore W2805658037C163716698 @default.
- W2805658037 hasConceptScore W2805658037C20556612 @default.
- W2805658037 hasConceptScore W2805658037C205649164 @default.
- W2805658037 hasConceptScore W2805658037C205711294 @default.
- W2805658037 hasConceptScore W2805658037C3020199158 @default.
- W2805658037 hasConceptScore W2805658037C30769735 @default.
- W2805658037 hasConceptScore W2805658037C31972630 @default.
- W2805658037 hasConceptScore W2805658037C36816356 @default.
- W2805658037 hasConceptScore W2805658037C41008148 @default.
- W2805658037 hasConceptScore W2805658037C58489278 @default.
- W2805658037 hasConceptScore W2805658037C62520636 @default.
- W2805658037 hasConceptScore W2805658037C62649853 @default.
- W2805658037 hasConceptScore W2805658037C81363708 @default.
- W2805658037 hasIssue "2" @default.
- W2805658037 hasLocation W28056580371 @default.
- W2805658037 hasLocation W28056580372 @default.
- W2805658037 hasLocation W28056580373 @default.
- W2805658037 hasLocation W28056580374 @default.