Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805668836> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2805668836 endingPage "064001" @default.
- W2805668836 startingPage "064001" @default.
- W2805668836 abstract "Vol. 126, No. 6 Science SelectionOpen AccessNature and Neurodevelopment: Differences in Brain Volume by Residential Exposure to Greennessis accompanied byThe Association between Lifelong Greenspace Exposure and 3-Dimensional Brain Magnetic Resonance Imaging in Barcelona Schoolchildren Wendee Nicole Wendee Nicole Search for more papers by this author Published:1 June 2018CID: 064001https://doi.org/10.1289/EHP3465Cited by:4View Article in:中文版AboutSectionsPDF ToolsDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InReddit A growing body of epidemiological studies have found associations between proximity to vegetated green areas (“greenspace”) and multiple measures of good health.1 Now researchers have examined how a child’s exposure to greenspace may affect the development of his or her brain structure. A study in Environmental Health Perspectives reports changes in volume of both gray and white matter in association with lifelong residential exposure to greenness.2 Further, the areas of the brain associated with greenness exposure in the study were also associated with cognitive function.The study was led by Payam Dadvand, an assistant professor of epidemiology at the Barcelona Institute for Global Health. The investigators used a subset of 253 schoolchildren aged 7–9 years from the Brain Development and Air Pollution Ultrafine Particles in School Children (BREATHE) project.3 To quantify lifelong exposure to greenness, the researchers used a measure known as the normalized difference vegetation index (NDVI) averaged across a buffer of 100 meters around each child’s residence(s) since birth. The NDVI is based on remotely sensed data on the density of vegetation in a given area.The NDVI is used in many studies of greenness to quantify the presence and density of vegetation in specific geographic areas. However, the index provides no information on the nature of the greenspace, whether it is accessible, or how it is used. Image: © Lee Adlaf/Shutterstock.To quantify differences in brain volume for areas of white and gray matter, three-dimensional magnetic resonance imaging (MRI) results were compared among children with varying degrees of exposure to greenness. In one substudy, the investigators identified brain regions with a degree of volume that was associated with scores on computerized tests of cognitive function. A second substudy looked for overlaps between the brain areas associated with lifelong greenness exposure and the cognitive tests.“We quantified the amount of greenness around the residential address of each child from birth to the time we did the brain imaging, and we saw that [a relatively greater] amount of greenness is associated with increased volume in some parts of the brain,” says Dadvand. “These increases in volume were associated with better cognitive function, ascertained through computerized cognitive tests, and in time, overlapped, partly, with parts of the brain associated with cognitive function.” But, he adds, it is important to focus not on specific areas but on the overall pattern.Adjustment for neighborhood socioeconomic status and maternal education reduced the sizes of the brain areas that were significantly associated with greenness, with maternal education being the most influential factor. Some areas were no longer significantly associated with greenness after adjustment, although several did remain significant. These included areas mapped to gray matter in the right prefrontal cortex and the right premotor cortex and to white matter in both hemispheres of the cerebellum. Gray matter is associated with higher-level thinking and processing, whereas white matter controls the autonomic nervous system and transmits information from the body to the gray matter.“The measures of MRIs and lifetime exposure to residential greenness make this study quite innovative,” says Peter James, an assistant professor of population medicine at Harvard Medical School and Harvard Pilgrim Health Care Institute, who was not involved in the study. “Although the mechanisms are still unclear, this study provides evidence that living near nature may contribute to brain development. However, there are some limitations to this analysis.”One limitation is that the NDVI does not incorporate the quality of the vegetation—for example, it provides no information on species type or whether vegetation occurs in, say, a park versus an overgrown vacant lot. The study also does not give any indication of the children’s interactions with the surrounding greenspace.Although the study used just one NDVI image (from July 2012, a month that falls between Barcelona’s maximally green seasons of spring and autumn), James says that it is unlikely that vegetation levels changed substantially over the few years of the children’s lives. However, he notes the findings may not apply to children in other geographic areas, and it will be important to confirm them in other study populations.The article refers to the biophilia hypothesis, first popularized by biologist E.O. Wilson, which states that exposure to nature is required for humans, especially children, to thrive.4 Dadvand says that a physical and mental connection to nature is “quite important in the context of our urbanizing world in which more and more children are living in urban areas, where they often have limited access to greenspaces, and, at the same time, are more exposed to air pollution and noise, factors that might have detrimental effects on their brain development.” Two of Dadvand’s previous studies also assessed greenspace in relation to cognitive development and attentiveness in schoolchildren,3,5 but this is the first to map brain structure changes.Dadvand adds that with all the bad news associated with environmental epidemiology—air pollution, climate change, and so forth—he likes that emerging studies about greenspace possibly enhancing brain development and cognition are harbingers of good news.References1. James P, Banay RF, Hart JE, Laden F. 2015. A review of the health benefits of greenness. Curr Epidemiol Rep 2(2):131–142, PMID: 26185745, doi:10.1007/s40471-015-0043-7. Crossref, Medline, Google Scholar2. Dadvand P, Pujol J, Macià D, Martínez-Vilavella G, Blanco-Hinojo L, Mortamais M, et al.2018. The association between lifelong greenspace exposure and 3-dimensional brain magnetic resonance imaging in Barcelona schoolchildren. Environ Health Perspect 126(2):027012, PMID: 29504939, doi:10.1289/EHP1876. Link, Google Scholar3. Dadvand P, Nieuwenhuijsen MJ, Esnaola M, Forns J, Basagaña X, Alvarez-Pedrerol M, et al.2015. Green spaces and cognitive development in primary schoolchildren. Proc Natl Acad Sci USA 112(26):7937–7942, PMID: 26080420, doi:10.1073/pnas.1503402112. Crossref, Medline, Google Scholar4. Kahn PH. 1997. Developmental psychology and the biophilia hypothesis: children's affiliation with nature. Dev Rev 17(1):1–61, doi:10.1006/drev.1996.0430. Crossref, Google Scholar5. Dadvand P, Tischer C, Estarlich M, Llop S, Dalmau-Bueno A, López-Vicente M, et al.2017. Lifelong residential exposure to green space and attention: a population-based prospective study. Environ Health Perspect 125(9):097016, PMID: 28934095, doi:10.1289/EHP694. Link, Google ScholarFiguresReferencesRelatedDetailsCited by Sakhvidi M, Mehrparvar A, Sakhvidi F and Dadvand P (2023) Greenspace and health, wellbeing, physical activity, and development in children and adolescents: an overview of the systematic reviews, Current Opinion in Environmental Science & Health, 10.1016/j.coesh.2023.100445, (100445), Online publication date: 1-Jan-2023. Zare Sakhvidi M, Knobel P, Bauwelinck M, de Keijzer C, Boll L, Spano G, Ubalde-Lopez M, Sanesi G, Mehrparvar A, Jacquemin B and Dadvand P (2022) Greenspace exposure and children behavior: A systematic review, Science of The Total Environment, 10.1016/j.scitotenv.2022.153608, 824, (153608), Online publication date: 1-Jun-2022. Leffers J (2021) Climate Change and Health of Children: Our Borrowed Future, Journal of Pediatric Health Care, 10.1016/j.pedhc.2021.09.002, Online publication date: 1-Nov-2021. Myers Z (2020) Reimagining an Urban Nature Wildness and Wellbeing, 10.1007/978-981-32-9923-8_2, (41-70), . Related articlesThe Association between Lifelong Greenspace Exposure and 3-Dimensional Brain Magnetic Resonance Imaging in Barcelona Schoolchildren23 February 2018Environmental Health Perspectives Vol. 126, No. 6 June 2018Metrics About Article Metrics Publication History Manuscript received5 February 2018Manuscript accepted6 February 2018Originally published1 June 2018 Financial disclosuresPDF download License information EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted. Note to readers with disabilities EHP strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in EHP articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact [email protected]. Our staff will work with you to assess and meet your accessibility needs within 3 working days." @default.
- W2805668836 created "2018-06-13" @default.
- W2805668836 creator A5087282949 @default.
- W2805668836 date "2018-06-15" @default.
- W2805668836 modified "2023-09-30" @default.
- W2805668836 title "Nature and Neurodevelopment: Differences in Brain Volume by Residential Exposure to Greenness" @default.
- W2805668836 cites W1933516342 @default.
- W2805668836 cites W2007790091 @default.
- W2805668836 cites W2120625739 @default.
- W2805668836 cites W2757307492 @default.
- W2805668836 cites W2790092182 @default.
- W2805668836 doi "https://doi.org/10.1289/ehp3465" @default.
- W2805668836 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6084845" @default.
- W2805668836 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29863828" @default.
- W2805668836 hasPublicationYear "2018" @default.
- W2805668836 type Work @default.
- W2805668836 sameAs 2805668836 @default.
- W2805668836 citedByCount "4" @default.
- W2805668836 countsByYear W28056688362019 @default.
- W2805668836 countsByYear W28056688362022 @default.
- W2805668836 countsByYear W28056688362023 @default.
- W2805668836 crossrefType "journal-article" @default.
- W2805668836 hasAuthorship W2805668836A5087282949 @default.
- W2805668836 hasBestOaLocation W28056688361 @default.
- W2805668836 hasConcept C107872376 @default.
- W2805668836 hasConcept C126838900 @default.
- W2805668836 hasConcept C143409427 @default.
- W2805668836 hasConcept C185592680 @default.
- W2805668836 hasConcept C39432304 @default.
- W2805668836 hasConcept C65835030 @default.
- W2805668836 hasConcept C71924100 @default.
- W2805668836 hasConcept C99454951 @default.
- W2805668836 hasConceptScore W2805668836C107872376 @default.
- W2805668836 hasConceptScore W2805668836C126838900 @default.
- W2805668836 hasConceptScore W2805668836C143409427 @default.
- W2805668836 hasConceptScore W2805668836C185592680 @default.
- W2805668836 hasConceptScore W2805668836C39432304 @default.
- W2805668836 hasConceptScore W2805668836C65835030 @default.
- W2805668836 hasConceptScore W2805668836C71924100 @default.
- W2805668836 hasConceptScore W2805668836C99454951 @default.
- W2805668836 hasIssue "6" @default.
- W2805668836 hasLocation W28056688361 @default.
- W2805668836 hasLocation W28056688362 @default.
- W2805668836 hasLocation W28056688363 @default.
- W2805668836 hasOpenAccess W2805668836 @default.
- W2805668836 hasPrimaryLocation W28056688361 @default.
- W2805668836 hasRelatedWork W1111756 @default.
- W2805668836 hasRelatedWork W1995515455 @default.
- W2805668836 hasRelatedWork W2065134019 @default.
- W2805668836 hasRelatedWork W2080531066 @default.
- W2805668836 hasRelatedWork W2094084270 @default.
- W2805668836 hasRelatedWork W2274718863 @default.
- W2805668836 hasRelatedWork W2748952813 @default.
- W2805668836 hasRelatedWork W2899084033 @default.
- W2805668836 hasRelatedWork W3032375762 @default.
- W2805668836 hasRelatedWork W3103970017 @default.
- W2805668836 hasVolume "126" @default.
- W2805668836 isParatext "false" @default.
- W2805668836 isRetracted "false" @default.
- W2805668836 magId "2805668836" @default.
- W2805668836 workType "article" @default.