Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805737268> ?p ?o ?g. }
- W2805737268 abstract "Traditional sentiment analysis approaches mainly focus on classifying the sentiment polarities or emotion categories of texts. However, they can’t exploit the sentiment intensity information. Therefore, the SemEval-2018 Task 1 is aimed to automatically determine the intensity of emotions or sentiment of tweets to mine fine-grained sentiment information. In order to address this task, we propose a system based on an attention CNN-LSTM model. In our model, LSTM is used to extract the long-term contextual information from texts. We apply attention techniques to selecting this information. A CNN layer with different size of kernels is used to extract local features. The dense layers take the pooled CNN feature maps and predict the intensity scores. Our system reaches average Pearson correlation score of 0.722 (ranked 12/48) in emotion intensity regression task, and 0.810 in valence regression task (ranked 15/38). It indicates that our system can be further extended." @default.
- W2805737268 created "2018-06-13" @default.
- W2805737268 creator A5001967239 @default.
- W2805737268 creator A5003505338 @default.
- W2805737268 creator A5011604295 @default.
- W2805737268 creator A5068189045 @default.
- W2805737268 creator A5076051057 @default.
- W2805737268 creator A5076458977 @default.
- W2805737268 date "2018-01-01" @default.
- W2805737268 modified "2023-09-24" @default.
- W2805737268 title "THU_NGN at SemEval-2018 Task 1: Fine-grained Tweet Sentiment Intensity Analysis with Attention CNN-LSTM" @default.
- W2805737268 cites W1569507287 @default.
- W2805737268 cites W1987425720 @default.
- W2805737268 cites W1994645462 @default.
- W2805737268 cites W2003303386 @default.
- W2805737268 cites W2100529970 @default.
- W2805737268 cites W2211192759 @default.
- W2805737268 cites W2252215182 @default.
- W2805737268 cites W2252278997 @default.
- W2805737268 cites W2284289336 @default.
- W2805737268 cites W2294363208 @default.
- W2805737268 cites W2464521204 @default.
- W2805737268 cites W2526960150 @default.
- W2805737268 cites W2575276796 @default.
- W2805737268 cites W2754782386 @default.
- W2805737268 cites W2756474357 @default.
- W2805737268 cites W2756723094 @default.
- W2805737268 cites W2757162124 @default.
- W2805737268 cites W2758204326 @default.
- W2805737268 cites W2805744755 @default.
- W2805737268 cites W2950577311 @default.
- W2805737268 cites W2950974174 @default.
- W2805737268 cites W2962814195 @default.
- W2805737268 cites W2963223838 @default.
- W2805737268 cites W3027304069 @default.
- W2805737268 cites W371426616 @default.
- W2805737268 doi "https://doi.org/10.18653/v1/s18-1028" @default.
- W2805737268 hasPublicationYear "2018" @default.
- W2805737268 type Work @default.
- W2805737268 sameAs 2805737268 @default.
- W2805737268 citedByCount "5" @default.
- W2805737268 countsByYear W28057372682019 @default.
- W2805737268 countsByYear W28057372682020 @default.
- W2805737268 crossrefType "proceedings-article" @default.
- W2805737268 hasAuthorship W2805737268A5001967239 @default.
- W2805737268 hasAuthorship W2805737268A5003505338 @default.
- W2805737268 hasAuthorship W2805737268A5011604295 @default.
- W2805737268 hasAuthorship W2805737268A5068189045 @default.
- W2805737268 hasAuthorship W2805737268A5076051057 @default.
- W2805737268 hasAuthorship W2805737268A5076458977 @default.
- W2805737268 hasBestOaLocation W28057372681 @default.
- W2805737268 hasConcept C105795698 @default.
- W2805737268 hasConcept C117220453 @default.
- W2805737268 hasConcept C120665830 @default.
- W2805737268 hasConcept C121332964 @default.
- W2805737268 hasConcept C154945302 @default.
- W2805737268 hasConcept C162324750 @default.
- W2805737268 hasConcept C165696696 @default.
- W2805737268 hasConcept C168900304 @default.
- W2805737268 hasConcept C187736073 @default.
- W2805737268 hasConcept C192209626 @default.
- W2805737268 hasConcept C204321447 @default.
- W2805737268 hasConcept C2524010 @default.
- W2805737268 hasConcept C2780451532 @default.
- W2805737268 hasConcept C33923547 @default.
- W2805737268 hasConcept C38652104 @default.
- W2805737268 hasConcept C41008148 @default.
- W2805737268 hasConcept C44572571 @default.
- W2805737268 hasConcept C62520636 @default.
- W2805737268 hasConcept C66402592 @default.
- W2805737268 hasConcept C83546350 @default.
- W2805737268 hasConceptScore W2805737268C105795698 @default.
- W2805737268 hasConceptScore W2805737268C117220453 @default.
- W2805737268 hasConceptScore W2805737268C120665830 @default.
- W2805737268 hasConceptScore W2805737268C121332964 @default.
- W2805737268 hasConceptScore W2805737268C154945302 @default.
- W2805737268 hasConceptScore W2805737268C162324750 @default.
- W2805737268 hasConceptScore W2805737268C165696696 @default.
- W2805737268 hasConceptScore W2805737268C168900304 @default.
- W2805737268 hasConceptScore W2805737268C187736073 @default.
- W2805737268 hasConceptScore W2805737268C192209626 @default.
- W2805737268 hasConceptScore W2805737268C204321447 @default.
- W2805737268 hasConceptScore W2805737268C2524010 @default.
- W2805737268 hasConceptScore W2805737268C2780451532 @default.
- W2805737268 hasConceptScore W2805737268C33923547 @default.
- W2805737268 hasConceptScore W2805737268C38652104 @default.
- W2805737268 hasConceptScore W2805737268C41008148 @default.
- W2805737268 hasConceptScore W2805737268C44572571 @default.
- W2805737268 hasConceptScore W2805737268C62520636 @default.
- W2805737268 hasConceptScore W2805737268C66402592 @default.
- W2805737268 hasConceptScore W2805737268C83546350 @default.
- W2805737268 hasLocation W28057372681 @default.
- W2805737268 hasOpenAccess W2805737268 @default.
- W2805737268 hasPrimaryLocation W28057372681 @default.
- W2805737268 hasRelatedWork W1839863673 @default.
- W2805737268 hasRelatedWork W2104637531 @default.
- W2805737268 hasRelatedWork W2251303898 @default.
- W2805737268 hasRelatedWork W2251770468 @default.
- W2805737268 hasRelatedWork W2468518518 @default.
- W2805737268 hasRelatedWork W2472331097 @default.