Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805743735> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2805743735 abstract "Social sciences and Humanities research is often based on large textual corpora, that it would be unfeasible to read in detail. Natural Language Processing (NLP) can identify important concepts and actors mentioned in a corpus, as well as the relations between them. Such information can provide an overview of the corpus useful for domain-experts, and help identify corpus areas relevant for a given research question. To automatically annotate corpora relevant for Digital Humanities (DH), the NLP technologies we applied are, first, Entity Linking, to identify corpus actors and concepts. Second, the relations between actors and concepts were determined based on an NLP pipeline which provides semantic role labeling and syntactic dependencies among other information. Part I outlines the state of the art, paying attention to how the technologies have been applied in DH.Generic NLP tools were used. As the efficacy of NLP methods depends on the corpus, some technological development was undertaken, described in Part II, in order to better adapt to the corpora in our case studies. Part II also shows an intrinsic evaluation of the technology developed, with satisfactory results. The technologies were applied to three very different corpora, as described in Part III. First, the manuscripts of Jeremy Bentham. This is a 18th-19th century corpus in political philosophy. Second, the PoliInformatics corpus, with heterogeneous materials about the American financial crisis of 2007-2008. Finally, the Earth Negotiations Bulletin (ENB), which covers international climate summits since 1995, where treaties like the Kyoto Protocol or the Paris Agreements get negotiated.For each corpus, navigation interfaces were developed. These user interfaces (UI) combine networks, full-text search and structured search based on NLP annotations. As an example, in the ENB corpus interface, which covers climate policy negotiations, searches can be performed based on relational information identified in the corpus: the negotiation actors having discussed a given issue using verbs indicating support or opposition can be searched, as well as all statements where a given actor has expressed support or opposition. Relation information is employed, beyond simple co-occurrence between corpus terms.The UIs were evaluated qualitatively with domain-experts, to assess their potential usefulness for research in the experts' domains. First, we payed attention to whether the corpus representations we created correspond to experts' knowledge of the corpus, as an indication of the sanity of the outputs we produced. Second, we tried to determine whether experts could gain new insight on the corpus by using the applications, e.g. if they found evidence unknown to them or new research ideas. Examples of insight gain were attested with the ENB interface; this constitutes a good validation of the work carried out in the thesis. Overall, the applications' strengths and weaknesses were pointed out, outlining possible improvements as future work." @default.
- W2805743735 created "2018-06-13" @default.
- W2805743735 creator A5000811543 @default.
- W2805743735 date "2017-06-23" @default.
- W2805743735 modified "2023-09-26" @default.
- W2805743735 title "Concept-based and relation-based corpus navigation : applications of natural language processing in digital humanities" @default.
- W2805743735 hasPublicationYear "2017" @default.
- W2805743735 type Work @default.
- W2805743735 sameAs 2805743735 @default.
- W2805743735 citedByCount "0" @default.
- W2805743735 crossrefType "dissertation" @default.
- W2805743735 hasAuthorship W2805743735A5000811543 @default.
- W2805743735 hasConcept C134306372 @default.
- W2805743735 hasConcept C136764020 @default.
- W2805743735 hasConcept C138885662 @default.
- W2805743735 hasConcept C144024400 @default.
- W2805743735 hasConcept C154945302 @default.
- W2805743735 hasConcept C199360897 @default.
- W2805743735 hasConcept C199776023 @default.
- W2805743735 hasConcept C204321447 @default.
- W2805743735 hasConcept C24351657 @default.
- W2805743735 hasConcept C2474386 @default.
- W2805743735 hasConcept C25343380 @default.
- W2805743735 hasConcept C33923547 @default.
- W2805743735 hasConcept C36289849 @default.
- W2805743735 hasConcept C36503486 @default.
- W2805743735 hasConcept C41008148 @default.
- W2805743735 hasConcept C41895202 @default.
- W2805743735 hasConcept C43521106 @default.
- W2805743735 hasConcept C532629269 @default.
- W2805743735 hasConcept C77088390 @default.
- W2805743735 hasConceptScore W2805743735C134306372 @default.
- W2805743735 hasConceptScore W2805743735C136764020 @default.
- W2805743735 hasConceptScore W2805743735C138885662 @default.
- W2805743735 hasConceptScore W2805743735C144024400 @default.
- W2805743735 hasConceptScore W2805743735C154945302 @default.
- W2805743735 hasConceptScore W2805743735C199360897 @default.
- W2805743735 hasConceptScore W2805743735C199776023 @default.
- W2805743735 hasConceptScore W2805743735C204321447 @default.
- W2805743735 hasConceptScore W2805743735C24351657 @default.
- W2805743735 hasConceptScore W2805743735C2474386 @default.
- W2805743735 hasConceptScore W2805743735C25343380 @default.
- W2805743735 hasConceptScore W2805743735C33923547 @default.
- W2805743735 hasConceptScore W2805743735C36289849 @default.
- W2805743735 hasConceptScore W2805743735C36503486 @default.
- W2805743735 hasConceptScore W2805743735C41008148 @default.
- W2805743735 hasConceptScore W2805743735C41895202 @default.
- W2805743735 hasConceptScore W2805743735C43521106 @default.
- W2805743735 hasConceptScore W2805743735C532629269 @default.
- W2805743735 hasConceptScore W2805743735C77088390 @default.
- W2805743735 hasLocation W28057437351 @default.
- W2805743735 hasOpenAccess W2805743735 @default.
- W2805743735 hasPrimaryLocation W28057437351 @default.
- W2805743735 hasRelatedWork W116700124 @default.
- W2805743735 hasRelatedWork W1567932384 @default.
- W2805743735 hasRelatedWork W2001617350 @default.
- W2805743735 hasRelatedWork W2039262691 @default.
- W2805743735 hasRelatedWork W21788732 @default.
- W2805743735 hasRelatedWork W2204166692 @default.
- W2805743735 hasRelatedWork W2246456597 @default.
- W2805743735 hasRelatedWork W2250984714 @default.
- W2805743735 hasRelatedWork W2251673411 @default.
- W2805743735 hasRelatedWork W2294742649 @default.
- W2805743735 hasRelatedWork W2407051582 @default.
- W2805743735 hasRelatedWork W2496065061 @default.
- W2805743735 hasRelatedWork W2517177940 @default.
- W2805743735 hasRelatedWork W2593361376 @default.
- W2805743735 hasRelatedWork W2739304883 @default.
- W2805743735 hasRelatedWork W2766067323 @default.
- W2805743735 hasRelatedWork W2917659727 @default.
- W2805743735 hasRelatedWork W291995643 @default.
- W2805743735 hasRelatedWork W2947886581 @default.
- W2805743735 hasRelatedWork W2985854182 @default.
- W2805743735 isParatext "false" @default.
- W2805743735 isRetracted "false" @default.
- W2805743735 magId "2805743735" @default.
- W2805743735 workType "dissertation" @default.