Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805776029> ?p ?o ?g. }
- W2805776029 endingPage "1504" @default.
- W2805776029 startingPage "1494" @default.
- W2805776029 abstract "What is the central question of this study? Do Sherpa highlanders, when exposed to graded hypobaric hypoxia, exhibit enhanced vasomotor and neurovascular control to maintain microcirculatory flux, and thus tissue oxygenation, when compared with altitude-naive lowlanders? What is the main finding and its importance? Sherpas, when exposed to hypobaric hypoxia at high altitude, demonstrated superior preservation of their peripheral microcirculatory perfusion, a greater oxygen unloading rate and sustained microvascular reactivity with enhanced vasomotion, when compared with altitude-naive lowlanders. These differences have not been reported previously and may improve our understanding of the multifactorial responses to sustained environmental hypoxia.Enhanced oxygen delivery, consequent to an increased microvascular perfusion, has been postulated to play a key role in the physiological adaptation of Tibetan highlanders to the hypobaric hypoxia encountered at high altitude. We tested the hypothesis that Sherpas, when exposed to graded hypobaric hypoxia, demonstrate enhanced vasomotor and neurovascular control to maintain microcirculatory flux, and thus tissue oxygenation, when compared with altitude-naive lowlanders. Eighty-three lowlanders [39 men and 44 women, 38.8 (13.1) years old; mean (SD)] and 61 Sherpas [28 men and 33 women, 27.9 (6.9) years old] were studied on ascent to Everest Base Camp over 11 days. Skin blood flux and tissue oxygen saturation were measured simultaneously using combined laser Doppler fluximetry and white light spectroscopy at baseline, 3500 and 5300 m. In both cohorts, ascent resulted in a decline in the sympathetically mediated microvascular constrictor response (P < 0.001), which was more marked in lowlanders than in Sherpas (P < 0.001). The microvascular dilator response evaluated by postocclusive reactive hyperaemia was significantly greater in Sherpas than in lowlanders at all sites (P < 0.002). Spectral analysis of the blood flux signals revealed enhanced myogenic (vasomotion) activity in Sherpas, which was unaffected by ascent to 5300 m. Although skin tissue oxygenation was lower in Sherpas than in lowlanders, the oxygen unloading rate was faster, and deoxyhaemoglobin levels higher, at all altitudes. Together, these data suggest that Sherpas, when exposed to hypobaric hypoxia, demonstrated superior preservation of peripheral microcirculatory perfusion compared with altitude-naive lowlanders. The physiological differences in local microvasculature vasomotor and neurovascular control may play a key role in Sherpa adaptation to high-altitude hypobaric hypoxia by sustaining local perfusion and tissue oxygenation." @default.
- W2805776029 created "2018-06-13" @default.
- W2805776029 creator A5005093318 @default.
- W2805776029 creator A5007005565 @default.
- W2805776029 creator A5010012671 @default.
- W2805776029 creator A5020015437 @default.
- W2805776029 creator A5033728922 @default.
- W2805776029 creator A5048101760 @default.
- W2805776029 creator A5072975564 @default.
- W2805776029 creator A5087208923 @default.
- W2805776029 creator A5087714759 @default.
- W2805776029 creator A5089100867 @default.
- W2805776029 date "2018-09-12" @default.
- W2805776029 modified "2023-10-14" @default.
- W2805776029 title "Sustained vasomotor control of skin microcirculation in Sherpas<i>versus</i>altitude-naive lowlanders: Experimental evidence from Xtreme Everest 2" @default.
- W2805776029 cites W1495226084 @default.
- W2805776029 cites W1507898656 @default.
- W2805776029 cites W1855690301 @default.
- W2805776029 cites W1964308022 @default.
- W2805776029 cites W1966117654 @default.
- W2805776029 cites W1966637075 @default.
- W2805776029 cites W1971099067 @default.
- W2805776029 cites W1987957616 @default.
- W2805776029 cites W1989283313 @default.
- W2805776029 cites W1994237759 @default.
- W2805776029 cites W1998904773 @default.
- W2805776029 cites W2007623461 @default.
- W2805776029 cites W2013226898 @default.
- W2805776029 cites W2016418232 @default.
- W2805776029 cites W2024854465 @default.
- W2805776029 cites W2041062685 @default.
- W2805776029 cites W2048672539 @default.
- W2805776029 cites W2054256551 @default.
- W2805776029 cites W2061511183 @default.
- W2805776029 cites W2068739210 @default.
- W2805776029 cites W2080097562 @default.
- W2805776029 cites W2085198637 @default.
- W2805776029 cites W2088315142 @default.
- W2805776029 cites W2092277070 @default.
- W2805776029 cites W2104402415 @default.
- W2805776029 cites W2107941038 @default.
- W2805776029 cites W2112874497 @default.
- W2805776029 cites W2117369669 @default.
- W2805776029 cites W2117859488 @default.
- W2805776029 cites W2123078868 @default.
- W2805776029 cites W2123632445 @default.
- W2805776029 cites W2125116040 @default.
- W2805776029 cites W2125844678 @default.
- W2805776029 cites W2126154107 @default.
- W2805776029 cites W2144603986 @default.
- W2805776029 cites W2146327384 @default.
- W2805776029 cites W2152297749 @default.
- W2805776029 cites W2157573469 @default.
- W2805776029 cites W2158149075 @default.
- W2805776029 cites W2166328099 @default.
- W2805776029 cites W2166928530 @default.
- W2805776029 cites W2167813704 @default.
- W2805776029 cites W2179667358 @default.
- W2805776029 cites W2267589998 @default.
- W2805776029 cites W2306080038 @default.
- W2805776029 cites W2409407023 @default.
- W2805776029 cites W2547220586 @default.
- W2805776029 cites W2581323994 @default.
- W2805776029 cites W2765671746 @default.
- W2805776029 cites W2789242933 @default.
- W2805776029 cites W4239084611 @default.
- W2805776029 cites W4245856726 @default.
- W2805776029 cites W4366721279 @default.
- W2805776029 doi "https://doi.org/10.1113/ep087236" @default.
- W2805776029 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30182473" @default.
- W2805776029 hasPublicationYear "2018" @default.
- W2805776029 type Work @default.
- W2805776029 sameAs 2805776029 @default.
- W2805776029 citedByCount "11" @default.
- W2805776029 countsByYear W28057760292018 @default.
- W2805776029 countsByYear W28057760292019 @default.
- W2805776029 countsByYear W28057760292020 @default.
- W2805776029 countsByYear W28057760292021 @default.
- W2805776029 countsByYear W28057760292022 @default.
- W2805776029 countsByYear W28057760292023 @default.
- W2805776029 crossrefType "journal-article" @default.
- W2805776029 hasAuthorship W2805776029A5005093318 @default.
- W2805776029 hasAuthorship W2805776029A5007005565 @default.
- W2805776029 hasAuthorship W2805776029A5010012671 @default.
- W2805776029 hasAuthorship W2805776029A5020015437 @default.
- W2805776029 hasAuthorship W2805776029A5033728922 @default.
- W2805776029 hasAuthorship W2805776029A5048101760 @default.
- W2805776029 hasAuthorship W2805776029A5072975564 @default.
- W2805776029 hasAuthorship W2805776029A5087208923 @default.
- W2805776029 hasAuthorship W2805776029A5087714759 @default.
- W2805776029 hasAuthorship W2805776029A5089100867 @default.
- W2805776029 hasBestOaLocation W28057760291 @default.
- W2805776029 hasConcept C105702510 @default.
- W2805776029 hasConcept C126322002 @default.
- W2805776029 hasConcept C12722491 @default.
- W2805776029 hasConcept C164705383 @default.
- W2805776029 hasConcept C178790620 @default.
- W2805776029 hasConcept C185592680 @default.