Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805870952> ?p ?o ?g. }
- W2805870952 endingPage "960" @default.
- W2805870952 startingPage "929" @default.
- W2805870952 abstract "Multiple-point simulations have been introduced over the past decade to overcome the limitations of second-order stochastic simulations in dealing with geologic complexity, curvilinear patterns, and non-Gaussianity. However, a limitation is that they sometimes fail to generate results that comply with the statistics of the available data while maintaining the consistency of high-order spatial statistics. As an alternative, high-order stochastic simulations based on spatial cumulants or spatial moments have been proposed; however, they are also computationally demanding, which limits their applicability. The present work derives a new computational model to numerically approximate the conditional probability density function (cpdf) as a multivariate Legendre polynomial series based on the concept of spatial Legendre moments. The advantage of this method is that no explicit computations of moments (or cumulants) are needed in the model. The approximation of the cpdf is simplified to the computation of a unified empirical function. Moreover, the new computational model computes the cpdfs within a local neighborhood without storing the high-order spatial statistics through a predefined template. With this computational model, the algorithm for the estimation of the cpdf is developed in such a way that the conditional cumulative distribution function (ccdf) can be computed conveniently through another recursive algorithm. In addition to the significant reduction of computational cost, the new algorithm maintains higher numerical precision compared to the original version of the high-order simulation. A new method is also proposed to deal with the replicates in the simulation algorithm, reducing the impacts of conflicting statistics between the sample data and the training image (TI). A brief description of implementation is provided and, for comparison and verification, a set of case studies is conducted and compared with the results of the well-established multi-point simulation algorithm, filtersim. This comparison demonstrates that the proposed high-order simulation algorithm can generate spatially complex geological patterns while also reproducing the high-order spatial statistics from the sample data." @default.
- W2805870952 created "2018-06-13" @default.
- W2805870952 creator A5045995672 @default.
- W2805870952 creator A5065012367 @default.
- W2805870952 creator A5087930002 @default.
- W2805870952 date "2018-06-04" @default.
- W2805870952 modified "2023-10-16" @default.
- W2805870952 title "A New Computational Model of High-Order Stochastic Simulation Based on Spatial Legendre Moments" @default.
- W2805870952 cites W118094499 @default.
- W2805870952 cites W1499512010 @default.
- W2805870952 cites W1537810918 @default.
- W2805870952 cites W1589864047 @default.
- W2805870952 cites W1963561938 @default.
- W2805870952 cites W1979086443 @default.
- W2805870952 cites W1993304724 @default.
- W2805870952 cites W1995565517 @default.
- W2805870952 cites W1997142784 @default.
- W2805870952 cites W2006788274 @default.
- W2805870952 cites W2018173843 @default.
- W2805870952 cites W2034008227 @default.
- W2805870952 cites W2060716201 @default.
- W2805870952 cites W2062300156 @default.
- W2805870952 cites W2062614603 @default.
- W2805870952 cites W2064871522 @default.
- W2805870952 cites W2071980587 @default.
- W2805870952 cites W2074057014 @default.
- W2805870952 cites W2074477709 @default.
- W2805870952 cites W2079671963 @default.
- W2805870952 cites W2080797504 @default.
- W2805870952 cites W2088650351 @default.
- W2805870952 cites W2096378978 @default.
- W2805870952 cites W2101655885 @default.
- W2805870952 cites W2138946060 @default.
- W2805870952 cites W2148903074 @default.
- W2805870952 cites W2498200701 @default.
- W2805870952 cites W2553783174 @default.
- W2805870952 cites W2593176887 @default.
- W2805870952 cites W2804634398 @default.
- W2805870952 cites W4252917338 @default.
- W2805870952 cites W80445348 @default.
- W2805870952 doi "https://doi.org/10.1007/s11004-018-9744-z" @default.
- W2805870952 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6404987" @default.
- W2805870952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30931019" @default.
- W2805870952 hasPublicationYear "2018" @default.
- W2805870952 type Work @default.
- W2805870952 sameAs 2805870952 @default.
- W2805870952 citedByCount "12" @default.
- W2805870952 countsByYear W28058709522018 @default.
- W2805870952 countsByYear W28058709522019 @default.
- W2805870952 countsByYear W28058709522020 @default.
- W2805870952 countsByYear W28058709522021 @default.
- W2805870952 countsByYear W28058709522022 @default.
- W2805870952 countsByYear W28058709522023 @default.
- W2805870952 crossrefType "journal-article" @default.
- W2805870952 hasAuthorship W2805870952A5045995672 @default.
- W2805870952 hasAuthorship W2805870952A5065012367 @default.
- W2805870952 hasAuthorship W2805870952A5087930002 @default.
- W2805870952 hasBestOaLocation W28058709521 @default.
- W2805870952 hasConcept C105795698 @default.
- W2805870952 hasConcept C111458787 @default.
- W2805870952 hasConcept C11413529 @default.
- W2805870952 hasConcept C121332964 @default.
- W2805870952 hasConcept C126255220 @default.
- W2805870952 hasConcept C134306372 @default.
- W2805870952 hasConcept C159620131 @default.
- W2805870952 hasConcept C172686274 @default.
- W2805870952 hasConcept C176222170 @default.
- W2805870952 hasConcept C179254644 @default.
- W2805870952 hasConcept C197055811 @default.
- W2805870952 hasConcept C28826006 @default.
- W2805870952 hasConcept C33923547 @default.
- W2805870952 hasConcept C41008148 @default.
- W2805870952 hasConcept C45374587 @default.
- W2805870952 hasConcept C74650414 @default.
- W2805870952 hasConceptScore W2805870952C105795698 @default.
- W2805870952 hasConceptScore W2805870952C111458787 @default.
- W2805870952 hasConceptScore W2805870952C11413529 @default.
- W2805870952 hasConceptScore W2805870952C121332964 @default.
- W2805870952 hasConceptScore W2805870952C126255220 @default.
- W2805870952 hasConceptScore W2805870952C134306372 @default.
- W2805870952 hasConceptScore W2805870952C159620131 @default.
- W2805870952 hasConceptScore W2805870952C172686274 @default.
- W2805870952 hasConceptScore W2805870952C176222170 @default.
- W2805870952 hasConceptScore W2805870952C179254644 @default.
- W2805870952 hasConceptScore W2805870952C197055811 @default.
- W2805870952 hasConceptScore W2805870952C28826006 @default.
- W2805870952 hasConceptScore W2805870952C33923547 @default.
- W2805870952 hasConceptScore W2805870952C41008148 @default.
- W2805870952 hasConceptScore W2805870952C45374587 @default.
- W2805870952 hasConceptScore W2805870952C74650414 @default.
- W2805870952 hasFunder F4320334593 @default.
- W2805870952 hasIssue "8" @default.
- W2805870952 hasLocation W28058709521 @default.
- W2805870952 hasLocation W28058709522 @default.
- W2805870952 hasLocation W28058709523 @default.
- W2805870952 hasLocation W28058709524 @default.
- W2805870952 hasLocation W28058709525 @default.
- W2805870952 hasOpenAccess W2805870952 @default.