Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805878300> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2805878300 endingPage "409" @default.
- W2805878300 startingPage "399" @default.
- W2805878300 abstract "This paper demonstrates the potential application of machine learning algorithms for approximate prediction of the load and deflection capacities of the novel type of Laced Steel Concrete-Composite1 (LSCC) beams proposed by Anandavalli et al. (Engineering Structures 2012). Initially, global and local responses measured on LSCC beam specimen in an experiment are used to validate nonlinear FE model of the LSCC beams. The data for the machine learning algorithms is then generated using validated FE model for a range of values of the identified sensitive parameters. The performance of four well-known machine learning algorithms, viz., Support Vector Regression (SVR), Minimax Probability Machine Regression (MPMR), Relevance Vector Machine (RVM) and Multigene Genetic Programing (MGGP) for the approximate estimation of the load and deflection capacities are compared in terms of well-defined error indices. Through relative comparison of the estimated values, it is demonstrated that the algorithms explored in the present study provide a good alternative to expensive experimental testing and sophisticated numerical simulation of the response of LSCC beams. The load carrying and displacement capacity of the LSCC was predicted well by MGGP and MPMR, respectively." @default.
- W2805878300 created "2018-06-13" @default.
- W2805878300 creator A5015138746 @default.
- W2805878300 creator A5047086697 @default.
- W2805878300 creator A5061664221 @default.
- W2805878300 creator A5081274492 @default.
- W2805878300 date "2018-01-01" @default.
- W2805878300 modified "2023-09-26" @default.
- W2805878300 title "Response prediction of laced steel-concrete composite beams using machine learning algorithms" @default.
- W2805878300 doi "https://doi.org/10.12989/sem.2018.66.3.399" @default.
- W2805878300 hasPublicationYear "2018" @default.
- W2805878300 type Work @default.
- W2805878300 sameAs 2805878300 @default.
- W2805878300 citedByCount "0" @default.
- W2805878300 crossrefType "journal-article" @default.
- W2805878300 hasAuthorship W2805878300A5015138746 @default.
- W2805878300 hasAuthorship W2805878300A5047086697 @default.
- W2805878300 hasAuthorship W2805878300A5061664221 @default.
- W2805878300 hasAuthorship W2805878300A5081274492 @default.
- W2805878300 hasConcept C11413529 @default.
- W2805878300 hasConcept C119857082 @default.
- W2805878300 hasConcept C120665830 @default.
- W2805878300 hasConcept C121332964 @default.
- W2805878300 hasConcept C12267149 @default.
- W2805878300 hasConcept C126255220 @default.
- W2805878300 hasConcept C127413603 @default.
- W2805878300 hasConcept C14948415 @default.
- W2805878300 hasConcept C149728462 @default.
- W2805878300 hasConcept C154945302 @default.
- W2805878300 hasConcept C2781355719 @default.
- W2805878300 hasConcept C33923547 @default.
- W2805878300 hasConcept C41008148 @default.
- W2805878300 hasConcept C66938386 @default.
- W2805878300 hasConceptScore W2805878300C11413529 @default.
- W2805878300 hasConceptScore W2805878300C119857082 @default.
- W2805878300 hasConceptScore W2805878300C120665830 @default.
- W2805878300 hasConceptScore W2805878300C121332964 @default.
- W2805878300 hasConceptScore W2805878300C12267149 @default.
- W2805878300 hasConceptScore W2805878300C126255220 @default.
- W2805878300 hasConceptScore W2805878300C127413603 @default.
- W2805878300 hasConceptScore W2805878300C14948415 @default.
- W2805878300 hasConceptScore W2805878300C149728462 @default.
- W2805878300 hasConceptScore W2805878300C154945302 @default.
- W2805878300 hasConceptScore W2805878300C2781355719 @default.
- W2805878300 hasConceptScore W2805878300C33923547 @default.
- W2805878300 hasConceptScore W2805878300C41008148 @default.
- W2805878300 hasConceptScore W2805878300C66938386 @default.
- W2805878300 hasIssue "3" @default.
- W2805878300 hasLocation W28058783001 @default.
- W2805878300 hasOpenAccess W2805878300 @default.
- W2805878300 hasPrimaryLocation W28058783001 @default.
- W2805878300 hasRelatedWork W1484726263 @default.
- W2805878300 hasRelatedWork W1971897098 @default.
- W2805878300 hasRelatedWork W2025950266 @default.
- W2805878300 hasRelatedWork W2053603187 @default.
- W2805878300 hasRelatedWork W2326320804 @default.
- W2805878300 hasRelatedWork W2354849884 @default.
- W2805878300 hasRelatedWork W2358423574 @default.
- W2805878300 hasRelatedWork W2360020112 @default.
- W2805878300 hasRelatedWork W2382372697 @default.
- W2805878300 hasRelatedWork W2392250502 @default.
- W2805878300 hasRelatedWork W2529967764 @default.
- W2805878300 hasRelatedWork W2943381038 @default.
- W2805878300 hasRelatedWork W2945198840 @default.
- W2805878300 hasRelatedWork W2995284167 @default.
- W2805878300 hasRelatedWork W3009818760 @default.
- W2805878300 hasRelatedWork W3035846893 @default.
- W2805878300 hasRelatedWork W3037821684 @default.
- W2805878300 hasRelatedWork W3047827893 @default.
- W2805878300 hasRelatedWork W3130809182 @default.
- W2805878300 hasRelatedWork W3183229991 @default.
- W2805878300 hasVolume "66" @default.
- W2805878300 isParatext "false" @default.
- W2805878300 isRetracted "false" @default.
- W2805878300 magId "2805878300" @default.
- W2805878300 workType "article" @default.