Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805919722> ?p ?o ?g. }
- W2805919722 endingPage "4340" @default.
- W2805919722 startingPage "4325" @default.
- W2805919722 abstract "Crucial to the development and refinement of organic electronics is a fundamental understanding of how deposition processes affect the active material’s resulting microstructure in the thin film. Meniscus-guided coating (MGC) methods are attractive because of their amenability to high-throughput, industrially relevant continuous processes like roll-to-roll deposition, but the mechanism of solid film formation has not been elucidated and is valuable for the precise control of thin-film morphology and thus ultimate device performance. In this work, we investigate the microstructural evolution of thin films of a diketopyrrolopyrrole–terthiophene donor–acceptor polymer semiconductor using both in situ and ex situ X-ray diffraction methods. On the basis of a comparison of disorder between the film bulk and the top surface and a depth profiling of the out-of-plane orientation of crystallites, we find that faster coating speeds introduce more disorder into the resulting films because the stochastic nucleation of disordered crystallites at the meniscus air–liquid interface becomes more dominant than substrate-mediated nucleation. Our results suggest that there exist three separate deposition regimes—namely the shear-dominate, disorder-dominate, and Landau–Levich–Derjaguin regimes—revealed by observing both polymer alignment via dry film thickness and optical dichroism, a property sensitive to the flow and shear fields. At low coating speeds, the shear strain imparted upon the solution directly induces polymer alignment, causing an increase in dichroism as a function of coating speed. When solvent evaporation becomes too rapid as coating speeds increase, a decrease in the dichroic ratio is observed before the classical Landau–Levich–Derjaguin regime occurs at the highest coating speeds, resulting in isotropic films. The preservation of out-of-plane crystalline texture throughout the thickness of the films is seen only for lower coating speeds, and a study of different deposition temperatures similarly indicates that the lower overall solvent evaporation is conducive to this process. Increased paracrystalline disorder (i.e., peak broadening) is observed by grazing-incidence wide-angle X-ray diffraction at the top interface of the dry films and at higher coating speeds. Together, these results indicate that more rapid solvent evaporation at higher coating speeds causes increased disorder, which can cause the nucleation of misaligned crystallites, affect the dichroic ratio, and may frustrate the alignment of polymer molecules in the amorphous regions of the film. Because the polymer studied and the deposition technique used are representative models, these results are likely general for aggregating, semicrystalline donor–acceptor polymers deposited with MGC." @default.
- W2805919722 created "2018-06-13" @default.
- W2805919722 creator A5010820593 @default.
- W2805919722 creator A5039478299 @default.
- W2805919722 creator A5042012998 @default.
- W2805919722 creator A5065306244 @default.
- W2805919722 creator A5068200515 @default.
- W2805919722 creator A5082837218 @default.
- W2805919722 creator A5089284339 @default.
- W2805919722 creator A5089978134 @default.
- W2805919722 date "2018-05-31" @default.
- W2805919722 modified "2023-10-10" @default.
- W2805919722 title "Microstructural Evolution of the Thin Films of a Donor–Acceptor Semiconducting Polymer Deposited by Meniscus-Guided Coating" @default.
- W2805919722 cites W1938540289 @default.
- W2805919722 cites W1967129554 @default.
- W2805919722 cites W1969726721 @default.
- W2805919722 cites W1975563876 @default.
- W2805919722 cites W1981157970 @default.
- W2805919722 cites W1986750654 @default.
- W2805919722 cites W1988148661 @default.
- W2805919722 cites W1994574147 @default.
- W2805919722 cites W2001988167 @default.
- W2805919722 cites W2012676153 @default.
- W2805919722 cites W2014655156 @default.
- W2805919722 cites W2014657621 @default.
- W2805919722 cites W2020003731 @default.
- W2805919722 cites W2021995161 @default.
- W2805919722 cites W2024409744 @default.
- W2805919722 cites W2026666005 @default.
- W2805919722 cites W2034525155 @default.
- W2805919722 cites W2035861536 @default.
- W2805919722 cites W2036531934 @default.
- W2805919722 cites W2037163729 @default.
- W2805919722 cites W2040654797 @default.
- W2805919722 cites W2045452847 @default.
- W2805919722 cites W2045999190 @default.
- W2805919722 cites W2048682854 @default.
- W2805919722 cites W2049431206 @default.
- W2805919722 cites W2050884971 @default.
- W2805919722 cites W2054810869 @default.
- W2805919722 cites W2070426847 @default.
- W2805919722 cites W2072019332 @default.
- W2805919722 cites W2075127141 @default.
- W2805919722 cites W2075469854 @default.
- W2805919722 cites W2090381309 @default.
- W2805919722 cites W2091506501 @default.
- W2805919722 cites W2095339419 @default.
- W2805919722 cites W2098896392 @default.
- W2805919722 cites W2116499739 @default.
- W2805919722 cites W2116650273 @default.
- W2805919722 cites W2118366573 @default.
- W2805919722 cites W2120865080 @default.
- W2805919722 cites W2128284030 @default.
- W2805919722 cites W2128410286 @default.
- W2805919722 cites W2129434898 @default.
- W2805919722 cites W2160766884 @default.
- W2805919722 cites W2214173490 @default.
- W2805919722 cites W2298364254 @default.
- W2805919722 cites W2313496602 @default.
- W2805919722 cites W2315814813 @default.
- W2805919722 cites W2317506299 @default.
- W2805919722 cites W2318729832 @default.
- W2805919722 cites W2320256386 @default.
- W2805919722 cites W2324758473 @default.
- W2805919722 cites W2329357956 @default.
- W2805919722 cites W2334835108 @default.
- W2805919722 cites W2336708999 @default.
- W2805919722 cites W2465900763 @default.
- W2805919722 cites W2468965001 @default.
- W2805919722 cites W2507250046 @default.
- W2805919722 cites W2509573304 @default.
- W2805919722 cites W2566193558 @default.
- W2805919722 cites W2577762041 @default.
- W2805919722 cites W2585209118 @default.
- W2805919722 cites W2592658541 @default.
- W2805919722 cites W2740982574 @default.
- W2805919722 cites W2767877717 @default.
- W2805919722 cites W2770700241 @default.
- W2805919722 cites W2788460747 @default.
- W2805919722 cites W2789695388 @default.
- W2805919722 cites W2793549852 @default.
- W2805919722 cites W2804118877 @default.
- W2805919722 cites W576767351 @default.
- W2805919722 doi "https://doi.org/10.1021/acs.macromol.8b00350" @default.
- W2805919722 hasPublicationYear "2018" @default.
- W2805919722 type Work @default.
- W2805919722 sameAs 2805919722 @default.
- W2805919722 citedByCount "19" @default.
- W2805919722 countsByYear W28059197222018 @default.
- W2805919722 countsByYear W28059197222019 @default.
- W2805919722 countsByYear W28059197222020 @default.
- W2805919722 countsByYear W28059197222021 @default.
- W2805919722 countsByYear W28059197222022 @default.
- W2805919722 countsByYear W28059197222023 @default.
- W2805919722 crossrefType "journal-article" @default.
- W2805919722 hasAuthorship W2805919722A5010820593 @default.
- W2805919722 hasAuthorship W2805919722A5039478299 @default.
- W2805919722 hasAuthorship W2805919722A5042012998 @default.