Matches in SemOpenAlex for { <https://semopenalex.org/work/W2805962019> ?p ?o ?g. }
- W2805962019 abstract "Abstract. We present an automatic aerosol classification method based solely on European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use of the Mahalanobis distance function that relates each un-classified measurement to a pre-defined aerosol type. As a first step (training phase), a reference dataset is set up consisting of already classified EARLINET data. Using this dataset, we defined eight aerosol classes: clean continental, polluted continental, dust, mixed dust, polluted dust, mixed marine, smoke, and volcanic ash. The effect of the number of aerosol classes has been explored, as well as the optimal set of intensive parameters to separate different aerosol types. Furthermore, the algorithm is trained with literature particle linear depolarization ratio values. As a second step (testing phase), we apply the method to an already classified EARLINET dataset and analyse the results of the comparison to this classified dataset. The predictive accuracy of the automatic classification varies between 59 % (minimum) and 90 % (maximum) from 8 to 4 aerosol classes, respectively, when evaluated against pre-classified EARLINET lidar. This indicates the potential use of the automatic classification to all network lidar data. Furthermore, the training of the algorithm with particle linear depolarization values found in literature further improves the accuracy: the accuracy range is 69–93 % from 8 (69 %) to 4 (93 %) aerosol classes, respectively. Additionally, the algorithm has proven to be highly versatile as it adapts to changes in the size of the training dataset and the number of aerosol classes and classifying parameters. Finally, the low computational time and demand for resources make the algorithm extremely suitable for the implementation within the Single Calculus Chain (SCC), the EARLINET centralised processing suite." @default.
- W2805962019 created "2018-06-13" @default.
- W2805962019 creator A5006295537 @default.
- W2805962019 creator A5010862704 @default.
- W2805962019 creator A5011457268 @default.
- W2805962019 creator A5015439734 @default.
- W2805962019 creator A5019618021 @default.
- W2805962019 creator A5034530333 @default.
- W2805962019 creator A5036392439 @default.
- W2805962019 creator A5040307539 @default.
- W2805962019 creator A5040738614 @default.
- W2805962019 creator A5044723965 @default.
- W2805962019 creator A5050295498 @default.
- W2805962019 creator A5051292813 @default.
- W2805962019 creator A5052435140 @default.
- W2805962019 creator A5058604038 @default.
- W2805962019 creator A5058888324 @default.
- W2805962019 creator A5064808727 @default.
- W2805962019 creator A5071562661 @default.
- W2805962019 creator A5072058696 @default.
- W2805962019 creator A5073406758 @default.
- W2805962019 creator A5077272435 @default.
- W2805962019 creator A5079149733 @default.
- W2805962019 creator A5079834362 @default.
- W2805962019 date "2018-05-30" @default.
- W2805962019 modified "2023-10-16" @default.
- W2805962019 title "An automatic observation-based typing method for EARLINET" @default.
- W2805962019 doi "https://doi.org/10.5194/acp-2018-427" @default.
- W2805962019 hasPublicationYear "2018" @default.
- W2805962019 type Work @default.
- W2805962019 sameAs 2805962019 @default.
- W2805962019 citedByCount "1" @default.
- W2805962019 countsByYear W28059620192018 @default.
- W2805962019 crossrefType "posted-content" @default.
- W2805962019 hasAuthorship W2805962019A5006295537 @default.
- W2805962019 hasAuthorship W2805962019A5010862704 @default.
- W2805962019 hasAuthorship W2805962019A5011457268 @default.
- W2805962019 hasAuthorship W2805962019A5015439734 @default.
- W2805962019 hasAuthorship W2805962019A5019618021 @default.
- W2805962019 hasAuthorship W2805962019A5034530333 @default.
- W2805962019 hasAuthorship W2805962019A5036392439 @default.
- W2805962019 hasAuthorship W2805962019A5040307539 @default.
- W2805962019 hasAuthorship W2805962019A5040738614 @default.
- W2805962019 hasAuthorship W2805962019A5044723965 @default.
- W2805962019 hasAuthorship W2805962019A5050295498 @default.
- W2805962019 hasAuthorship W2805962019A5051292813 @default.
- W2805962019 hasAuthorship W2805962019A5052435140 @default.
- W2805962019 hasAuthorship W2805962019A5058604038 @default.
- W2805962019 hasAuthorship W2805962019A5058888324 @default.
- W2805962019 hasAuthorship W2805962019A5064808727 @default.
- W2805962019 hasAuthorship W2805962019A5071562661 @default.
- W2805962019 hasAuthorship W2805962019A5072058696 @default.
- W2805962019 hasAuthorship W2805962019A5073406758 @default.
- W2805962019 hasAuthorship W2805962019A5077272435 @default.
- W2805962019 hasAuthorship W2805962019A5079149733 @default.
- W2805962019 hasAuthorship W2805962019A5079834362 @default.
- W2805962019 hasBestOaLocation W28059620191 @default.
- W2805962019 hasConcept C127313418 @default.
- W2805962019 hasConcept C127413603 @default.
- W2805962019 hasConcept C146978453 @default.
- W2805962019 hasConcept C153294291 @default.
- W2805962019 hasConcept C154945302 @default.
- W2805962019 hasConcept C177264268 @default.
- W2805962019 hasConcept C1921717 @default.
- W2805962019 hasConcept C199360897 @default.
- W2805962019 hasConcept C204323151 @default.
- W2805962019 hasConcept C205649164 @default.
- W2805962019 hasConcept C2779345167 @default.
- W2805962019 hasConcept C39432304 @default.
- W2805962019 hasConcept C41008148 @default.
- W2805962019 hasConcept C51399673 @default.
- W2805962019 hasConcept C62649853 @default.
- W2805962019 hasConceptScore W2805962019C127313418 @default.
- W2805962019 hasConceptScore W2805962019C127413603 @default.
- W2805962019 hasConceptScore W2805962019C146978453 @default.
- W2805962019 hasConceptScore W2805962019C153294291 @default.
- W2805962019 hasConceptScore W2805962019C154945302 @default.
- W2805962019 hasConceptScore W2805962019C177264268 @default.
- W2805962019 hasConceptScore W2805962019C1921717 @default.
- W2805962019 hasConceptScore W2805962019C199360897 @default.
- W2805962019 hasConceptScore W2805962019C204323151 @default.
- W2805962019 hasConceptScore W2805962019C205649164 @default.
- W2805962019 hasConceptScore W2805962019C2779345167 @default.
- W2805962019 hasConceptScore W2805962019C39432304 @default.
- W2805962019 hasConceptScore W2805962019C41008148 @default.
- W2805962019 hasConceptScore W2805962019C51399673 @default.
- W2805962019 hasConceptScore W2805962019C62649853 @default.
- W2805962019 hasLocation W28059620191 @default.
- W2805962019 hasLocation W28059620192 @default.
- W2805962019 hasOpenAccess W2805962019 @default.
- W2805962019 hasPrimaryLocation W28059620191 @default.
- W2805962019 hasRelatedWork W1977030628 @default.
- W2805962019 hasRelatedWork W2146037420 @default.
- W2805962019 hasRelatedWork W2146534786 @default.
- W2805962019 hasRelatedWork W2473255267 @default.
- W2805962019 hasRelatedWork W2730157322 @default.
- W2805962019 hasRelatedWork W2787423127 @default.
- W2805962019 hasRelatedWork W2834916931 @default.
- W2805962019 hasRelatedWork W2887247668 @default.
- W2805962019 hasRelatedWork W2899552214 @default.