Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806094831> ?p ?o ?g. }
- W2806094831 abstract "We present a machine-learning approach to a long-standing issue in quantum many-body physics, namely, analytic continuation. This notorious ill-conditioned problem of obtaining spectral function from imaginary time Green's function has been a focus of new method developments for past decades. Here we demonstrate the usefulness of modern machine-learning techniques including convolutional neural networks and the variants of stochastic gradient descent optimiser. Machine-learning continuation kernel is successfully realized without any 'domain-knowledge', which means that any physical 'prior' is not utilized in the kernel construction and the neural networks 'learn' the knowledge solely from 'training'. The outstanding performance is achieved for both insulating and metallic band structure. Our machine-learning-based approach not only provides the more accurate spectrum than the conventional methods in terms of peak positions and heights, but is also more robust against the noise which is the required key feature for any continuation technique to be successful. Furthermore, its computation speed is 10$^4$-10$^5$ times faster than maximum entropy method." @default.
- W2806094831 created "2018-06-13" @default.
- W2806094831 creator A5046376217 @default.
- W2806094831 creator A5059339472 @default.
- W2806094831 creator A5062304936 @default.
- W2806094831 date "2018-12-03" @default.
- W2806094831 modified "2023-10-05" @default.
- W2806094831 title "Analytic continuation via domain knowledge free machine learning" @default.
- W2806094831 cites W1494177362 @default.
- W2806094831 cites W1572063013 @default.
- W2806094831 cites W1865667476 @default.
- W2806094831 cites W1877409772 @default.
- W2806094831 cites W1964809733 @default.
- W2806094831 cites W1972044528 @default.
- W2806094831 cites W1978209339 @default.
- W2806094831 cites W1983596827 @default.
- W2806094831 cites W1992161108 @default.
- W2806094831 cites W1997049361 @default.
- W2806094831 cites W1999392367 @default.
- W2806094831 cites W2013697271 @default.
- W2806094831 cites W2016866575 @default.
- W2806094831 cites W2018532742 @default.
- W2806094831 cites W2022508996 @default.
- W2806094831 cites W2025444507 @default.
- W2806094831 cites W2036144551 @default.
- W2806094831 cites W2068539538 @default.
- W2806094831 cites W2069563009 @default.
- W2806094831 cites W2092766760 @default.
- W2806094831 cites W2112796928 @default.
- W2806094831 cites W2121448251 @default.
- W2806094831 cites W2126240354 @default.
- W2806094831 cites W2128033389 @default.
- W2806094831 cites W2144030023 @default.
- W2806094831 cites W2149298154 @default.
- W2806094831 cites W2160815625 @default.
- W2806094831 cites W2164805481 @default.
- W2806094831 cites W2257979135 @default.
- W2806094831 cites W2306477081 @default.
- W2806094831 cites W2337082154 @default.
- W2806094831 cites W2345866785 @default.
- W2806094831 cites W2414456771 @default.
- W2806094831 cites W2418689459 @default.
- W2806094831 cites W2419175238 @default.
- W2806094831 cites W2466991859 @default.
- W2806094831 cites W2519744985 @default.
- W2806094831 cites W2521267242 @default.
- W2806094831 cites W2530117613 @default.
- W2806094831 cites W2533940598 @default.
- W2806094831 cites W2547447472 @default.
- W2806094831 cites W2556341799 @default.
- W2806094831 cites W2565212977 @default.
- W2806094831 cites W2597208492 @default.
- W2806094831 cites W2606850798 @default.
- W2806094831 cites W2618945100 @default.
- W2806094831 cites W2650911154 @default.
- W2806094831 cites W2726993892 @default.
- W2806094831 cites W2756291233 @default.
- W2806094831 cites W2795523443 @default.
- W2806094831 cites W2795629960 @default.
- W2806094831 cites W2919115771 @default.
- W2806094831 cites W3022043600 @default.
- W2806094831 cites W3104239185 @default.
- W2806094831 cites W816255669 @default.
- W2806094831 doi "https://doi.org/10.1103/physrevb.98.245101" @default.
- W2806094831 hasPublicationYear "2018" @default.
- W2806094831 type Work @default.
- W2806094831 sameAs 2806094831 @default.
- W2806094831 citedByCount "44" @default.
- W2806094831 countsByYear W28060948312019 @default.
- W2806094831 countsByYear W28060948312020 @default.
- W2806094831 countsByYear W28060948312021 @default.
- W2806094831 countsByYear W28060948312022 @default.
- W2806094831 countsByYear W28060948312023 @default.
- W2806094831 crossrefType "journal-article" @default.
- W2806094831 hasAuthorship W2806094831A5046376217 @default.
- W2806094831 hasAuthorship W2806094831A5059339472 @default.
- W2806094831 hasAuthorship W2806094831A5062304936 @default.
- W2806094831 hasBestOaLocation W28060948312 @default.
- W2806094831 hasConcept C108583219 @default.
- W2806094831 hasConcept C11413529 @default.
- W2806094831 hasConcept C114614502 @default.
- W2806094831 hasConcept C119857082 @default.
- W2806094831 hasConcept C134306372 @default.
- W2806094831 hasConcept C14036430 @default.
- W2806094831 hasConcept C151602998 @default.
- W2806094831 hasConcept C154945302 @default.
- W2806094831 hasConcept C199360897 @default.
- W2806094831 hasConcept C206688291 @default.
- W2806094831 hasConcept C33923547 @default.
- W2806094831 hasConcept C41008148 @default.
- W2806094831 hasConcept C45374587 @default.
- W2806094831 hasConcept C50644808 @default.
- W2806094831 hasConcept C74193536 @default.
- W2806094831 hasConcept C78458016 @default.
- W2806094831 hasConcept C81363708 @default.
- W2806094831 hasConcept C86803240 @default.
- W2806094831 hasConcept C88626702 @default.
- W2806094831 hasConceptScore W2806094831C108583219 @default.
- W2806094831 hasConceptScore W2806094831C11413529 @default.
- W2806094831 hasConceptScore W2806094831C114614502 @default.