Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806142427> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2806142427 endingPage "1155" @default.
- W2806142427 startingPage "1150" @default.
- W2806142427 abstract "This paper presents a bounded confidence gossip algorithm for describing the process of opinion formation over a communication network. Each agent in the network keeps a time-varying opinion vector (or state), which represents its opinion about a set of matters. A common confidence threshold is set for all of the agents. The states of agents in the network will be updated time by time according to an iterative procedure: At each time, 1) one agent is chosen randomly, then it chooses one of its neighbors on the communication graph to contact with; 2) they exchange their states; and 3) if they have different states and the distance between their states is strictly smaller than the confidence threshold, they update their states as the average of the two. This algorithm converges almost surely to some equilibrium point such that any two adjacent agents either have the same state or have distinct states whose distance is no less than the confidence threshold. This is called the constant confidence threshold algorithm. An increasing confidence threshold algorithm, which repeats the constant confidence threshold algorithm several times with increasing confidence threshold, is also proposed. The algorithm is also convergent almost surely to some equilibrium point. Applicability of the method to clustering problems is shown through numerical examples." @default.
- W2806142427 created "2018-06-13" @default.
- W2806142427 creator A5007759108 @default.
- W2806142427 creator A5059337652 @default.
- W2806142427 creator A5076798740 @default.
- W2806142427 creator A5077788540 @default.
- W2806142427 creator A5088148601 @default.
- W2806142427 date "2019-03-01" @default.
- W2806142427 modified "2023-10-18" @default.
- W2806142427 title "Bounded Confidence Gossip Algorithms for Opinion Formation and Data Clustering" @default.
- W2806142427 cites W1987971958 @default.
- W2806142427 cites W1998871699 @default.
- W2806142427 cites W2006296538 @default.
- W2806142427 cites W2018800107 @default.
- W2806142427 cites W2019579651 @default.
- W2806142427 cites W2027514326 @default.
- W2806142427 cites W2045258303 @default.
- W2806142427 cites W2049633694 @default.
- W2806142427 cites W2051224630 @default.
- W2806142427 cites W2052167135 @default.
- W2806142427 cites W2083689991 @default.
- W2806142427 cites W2104339642 @default.
- W2806142427 cites W2114747139 @default.
- W2806142427 cites W2549229028 @default.
- W2806142427 cites W2563369837 @default.
- W2806142427 cites W3102103731 @default.
- W2806142427 cites W4250134109 @default.
- W2806142427 cites W4251061641 @default.
- W2806142427 doi "https://doi.org/10.1109/tac.2018.2843294" @default.
- W2806142427 hasPublicationYear "2019" @default.
- W2806142427 type Work @default.
- W2806142427 sameAs 2806142427 @default.
- W2806142427 citedByCount "11" @default.
- W2806142427 countsByYear W28061424272020 @default.
- W2806142427 countsByYear W28061424272021 @default.
- W2806142427 countsByYear W28061424272022 @default.
- W2806142427 crossrefType "journal-article" @default.
- W2806142427 hasAuthorship W2806142427A5007759108 @default.
- W2806142427 hasAuthorship W2806142427A5059337652 @default.
- W2806142427 hasAuthorship W2806142427A5076798740 @default.
- W2806142427 hasAuthorship W2806142427A5077788540 @default.
- W2806142427 hasAuthorship W2806142427A5088148601 @default.
- W2806142427 hasConcept C11413529 @default.
- W2806142427 hasConcept C134306372 @default.
- W2806142427 hasConcept C154945302 @default.
- W2806142427 hasConcept C15744967 @default.
- W2806142427 hasConcept C33923547 @default.
- W2806142427 hasConcept C34388435 @default.
- W2806142427 hasConcept C41008148 @default.
- W2806142427 hasConcept C62989814 @default.
- W2806142427 hasConcept C73555534 @default.
- W2806142427 hasConcept C77805123 @default.
- W2806142427 hasConceptScore W2806142427C11413529 @default.
- W2806142427 hasConceptScore W2806142427C134306372 @default.
- W2806142427 hasConceptScore W2806142427C154945302 @default.
- W2806142427 hasConceptScore W2806142427C15744967 @default.
- W2806142427 hasConceptScore W2806142427C33923547 @default.
- W2806142427 hasConceptScore W2806142427C34388435 @default.
- W2806142427 hasConceptScore W2806142427C41008148 @default.
- W2806142427 hasConceptScore W2806142427C62989814 @default.
- W2806142427 hasConceptScore W2806142427C73555534 @default.
- W2806142427 hasConceptScore W2806142427C77805123 @default.
- W2806142427 hasFunder F4320320907 @default.
- W2806142427 hasFunder F4320338075 @default.
- W2806142427 hasIssue "3" @default.
- W2806142427 hasLocation W28061424271 @default.
- W2806142427 hasOpenAccess W2806142427 @default.
- W2806142427 hasPrimaryLocation W28061424271 @default.
- W2806142427 hasRelatedWork W2018828049 @default.
- W2806142427 hasRelatedWork W2042726902 @default.
- W2806142427 hasRelatedWork W2045093162 @default.
- W2806142427 hasRelatedWork W2046712581 @default.
- W2806142427 hasRelatedWork W2136053165 @default.
- W2806142427 hasRelatedWork W2314476621 @default.
- W2806142427 hasRelatedWork W2361463911 @default.
- W2806142427 hasRelatedWork W2367467503 @default.
- W2806142427 hasRelatedWork W2743680830 @default.
- W2806142427 hasRelatedWork W3102909640 @default.
- W2806142427 hasVolume "64" @default.
- W2806142427 isParatext "false" @default.
- W2806142427 isRetracted "false" @default.
- W2806142427 magId "2806142427" @default.
- W2806142427 workType "article" @default.