Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806174589> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2806174589 abstract "Big Data technologies have a great potential in transforming healthcare, as they have revolutionized other industries. In addition to reducing the cost, they could save millions of lives and improve patient outcomes. Heart Failure (HF) is the leading death cause disease, both nationally and internally. The Social and individual burden of this disease can be reduced by its early detection. However, the signs and symptoms of HF in the early stages are not clear, so it is relatively difficult to prevent or predict it. The main objective of this research is to propose a model to predict patients with HF using a multi-structure dataset integrated from various resources. The underpinning of our proposed model relies on studying the current analytical techniques that support heart failure prediction, and then build an integrated model based on Big Data technologies using WEKA analytics tool. To achieve this, we extracted different important factors of heart failure from King Saud Medical City (KSUMC) system, Saudi Arabia, which are available in structured, semi-structured and unstructured format. Unfortunately, a lot of information is buried in unstructured data format. We applied some pre-processing techniques to enhance the parameters and integrate different data sources in Hadoop Distributed File System (HDFS) using distributed-WEKA-spark package. Then, we applied data-mining algorithms to discover patterns in the dataset to predict heart risks and causes. Finally, the analyzed report is stored and distributed to get the insight needed from the prediction. Our proposed model achieved an accuracy and Area under the Curve (AUC) of 93.75% and 94.3%, respectively." @default.
- W2806174589 created "2018-06-13" @default.
- W2806174589 creator A5005492355 @default.
- W2806174589 creator A5025677824 @default.
- W2806174589 date "2018-01-01" @default.
- W2806174589 modified "2023-10-17" @default.
- W2806174589 title "Heart Failure Prediction Models using Big Data Techniques" @default.
- W2806174589 cites W1175355699 @default.
- W2806174589 cites W1976196376 @default.
- W2806174589 cites W1977556410 @default.
- W2806174589 cites W1987402444 @default.
- W2806174589 cites W2013071988 @default.
- W2806174589 cites W2016519398 @default.
- W2806174589 cites W2149802037 @default.
- W2806174589 cites W2317976744 @default.
- W2806174589 cites W2336081189 @default.
- W2806174589 cites W2406764433 @default.
- W2806174589 cites W2517656122 @default.
- W2806174589 cites W416578099 @default.
- W2806174589 doi "https://doi.org/10.14569/ijacsa.2018.090547" @default.
- W2806174589 hasPublicationYear "2018" @default.
- W2806174589 type Work @default.
- W2806174589 sameAs 2806174589 @default.
- W2806174589 citedByCount "2" @default.
- W2806174589 countsByYear W28061745892021 @default.
- W2806174589 countsByYear W28061745892023 @default.
- W2806174589 crossrefType "journal-article" @default.
- W2806174589 hasAuthorship W2806174589A5005492355 @default.
- W2806174589 hasAuthorship W2806174589A5025677824 @default.
- W2806174589 hasBestOaLocation W28061745891 @default.
- W2806174589 hasConcept C119857082 @default.
- W2806174589 hasConcept C124101348 @default.
- W2806174589 hasConcept C199360897 @default.
- W2806174589 hasConcept C2522767166 @default.
- W2806174589 hasConcept C2781215313 @default.
- W2806174589 hasConcept C41008148 @default.
- W2806174589 hasConcept C45804977 @default.
- W2806174589 hasConcept C75684735 @default.
- W2806174589 hasConcept C79158427 @default.
- W2806174589 hasConceptScore W2806174589C119857082 @default.
- W2806174589 hasConceptScore W2806174589C124101348 @default.
- W2806174589 hasConceptScore W2806174589C199360897 @default.
- W2806174589 hasConceptScore W2806174589C2522767166 @default.
- W2806174589 hasConceptScore W2806174589C2781215313 @default.
- W2806174589 hasConceptScore W2806174589C41008148 @default.
- W2806174589 hasConceptScore W2806174589C45804977 @default.
- W2806174589 hasConceptScore W2806174589C75684735 @default.
- W2806174589 hasConceptScore W2806174589C79158427 @default.
- W2806174589 hasIssue "5" @default.
- W2806174589 hasLocation W28061745891 @default.
- W2806174589 hasOpenAccess W2806174589 @default.
- W2806174589 hasPrimaryLocation W28061745891 @default.
- W2806174589 hasRelatedWork W2337538147 @default.
- W2806174589 hasRelatedWork W2499073664 @default.
- W2806174589 hasRelatedWork W2752106475 @default.
- W2806174589 hasRelatedWork W2769430831 @default.
- W2806174589 hasRelatedWork W2944988209 @default.
- W2806174589 hasRelatedWork W3007959775 @default.
- W2806174589 hasRelatedWork W3109375702 @default.
- W2806174589 hasRelatedWork W3177086633 @default.
- W2806174589 hasRelatedWork W4226411239 @default.
- W2806174589 hasRelatedWork W2737833832 @default.
- W2806174589 hasVolume "9" @default.
- W2806174589 isParatext "false" @default.
- W2806174589 isRetracted "false" @default.
- W2806174589 magId "2806174589" @default.
- W2806174589 workType "article" @default.