Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806242585> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2806242585 endingPage "683" @default.
- W2806242585 startingPage "671" @default.
- W2806242585 abstract "Breast cancer has high incidence rate compared to the other cancers among women. This disease leads to die if it does not diagnosis early. Fortunately, by means of modern imaging procedure such as MRI, mammography, thermography, etc., and computer systems, it is possible to diagnose all kind of breast cancers in a short time. One type of BC images is histology images. They are obtained from the entire cut-off texture by use of digital cameras and contain invaluable information to diagnose malignant and benign lesions. Recently by requesting to use the digital workflow in surgical pathology, the diagnosis based on whole slide microscopy image analysis has attracted the attention of many researchers in medical image processing. Computer aided diagnosis (CAD) systems are developed to help pathologist make a better decision. There are some weaknesses in histology images based CAD systems in compared with radiology images based CAD systems. As these images are collected in different laboratory stages and from different samples, they have different distributions leading to mismatch of training (source) domain and test (target) domain. On the other hand, there is the great similarity between images of benign tumors with those of malignant. So if these images are analyzed undiscriminating, this leads to decrease classifier performance and recognition rate. In this research, a new representation learning-based unsupervised domain adaptation method is proposed to overcome these problems. This method attempts to distinguish benign extracted feature vectors from those of malignant ones by learning a domain invariant space as much as possible. This method achieved the average classification rate of 88.5% on BreaKHis dataset and increased 5.1% classification rate compared with basic methods and 1.25% with state-of-art methods." @default.
- W2806242585 created "2018-06-13" @default.
- W2806242585 creator A5034533122 @default.
- W2806242585 creator A5057450178 @default.
- W2806242585 creator A5083441099 @default.
- W2806242585 creator A5090725409 @default.
- W2806242585 date "2018-01-01" @default.
- W2806242585 modified "2023-10-14" @default.
- W2806242585 title "Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images" @default.
- W2806242585 cites W1147193425 @default.
- W2806242585 cites W1835905048 @default.
- W2806242585 cites W1887296478 @default.
- W2806242585 cites W1984372368 @default.
- W2806242585 cites W2000266578 @default.
- W2806242585 cites W2051765910 @default.
- W2806242585 cites W2078700457 @default.
- W2806242585 cites W2085721351 @default.
- W2806242585 cites W2093030207 @default.
- W2806242585 cites W2100664256 @default.
- W2806242585 cites W2103243046 @default.
- W2806242585 cites W2119774436 @default.
- W2806242585 cites W2149544692 @default.
- W2806242585 cites W2151608510 @default.
- W2806242585 cites W2163808566 @default.
- W2806242585 cites W2313312719 @default.
- W2806242585 cites W2343359588 @default.
- W2806242585 cites W2344480160 @default.
- W2806242585 cites W2520436654 @default.
- W2806242585 cites W2537229885 @default.
- W2806242585 cites W2560322684 @default.
- W2806242585 cites W2751723768 @default.
- W2806242585 cites W2767410506 @default.
- W2806242585 doi "https://doi.org/10.1016/j.bbe.2018.04.008" @default.
- W2806242585 hasPublicationYear "2018" @default.
- W2806242585 type Work @default.
- W2806242585 sameAs 2806242585 @default.
- W2806242585 citedByCount "45" @default.
- W2806242585 countsByYear W28062425852018 @default.
- W2806242585 countsByYear W28062425852019 @default.
- W2806242585 countsByYear W28062425852020 @default.
- W2806242585 countsByYear W28062425852021 @default.
- W2806242585 countsByYear W28062425852022 @default.
- W2806242585 countsByYear W28062425852023 @default.
- W2806242585 crossrefType "journal-article" @default.
- W2806242585 hasAuthorship W2806242585A5034533122 @default.
- W2806242585 hasAuthorship W2806242585A5057450178 @default.
- W2806242585 hasAuthorship W2806242585A5083441099 @default.
- W2806242585 hasAuthorship W2806242585A5090725409 @default.
- W2806242585 hasConcept C121608353 @default.
- W2806242585 hasConcept C126322002 @default.
- W2806242585 hasConcept C126838900 @default.
- W2806242585 hasConcept C127413603 @default.
- W2806242585 hasConcept C153180895 @default.
- W2806242585 hasConcept C154945302 @default.
- W2806242585 hasConcept C194789388 @default.
- W2806242585 hasConcept C199639397 @default.
- W2806242585 hasConcept C2779549770 @default.
- W2806242585 hasConcept C2780472235 @default.
- W2806242585 hasConcept C31972630 @default.
- W2806242585 hasConcept C41008148 @default.
- W2806242585 hasConcept C530470458 @default.
- W2806242585 hasConcept C71924100 @default.
- W2806242585 hasConcept C95623464 @default.
- W2806242585 hasConceptScore W2806242585C121608353 @default.
- W2806242585 hasConceptScore W2806242585C126322002 @default.
- W2806242585 hasConceptScore W2806242585C126838900 @default.
- W2806242585 hasConceptScore W2806242585C127413603 @default.
- W2806242585 hasConceptScore W2806242585C153180895 @default.
- W2806242585 hasConceptScore W2806242585C154945302 @default.
- W2806242585 hasConceptScore W2806242585C194789388 @default.
- W2806242585 hasConceptScore W2806242585C199639397 @default.
- W2806242585 hasConceptScore W2806242585C2779549770 @default.
- W2806242585 hasConceptScore W2806242585C2780472235 @default.
- W2806242585 hasConceptScore W2806242585C31972630 @default.
- W2806242585 hasConceptScore W2806242585C41008148 @default.
- W2806242585 hasConceptScore W2806242585C530470458 @default.
- W2806242585 hasConceptScore W2806242585C71924100 @default.
- W2806242585 hasConceptScore W2806242585C95623464 @default.
- W2806242585 hasFunder F4320322813 @default.
- W2806242585 hasIssue "3" @default.
- W2806242585 hasLocation W28062425851 @default.
- W2806242585 hasOpenAccess W2806242585 @default.
- W2806242585 hasPrimaryLocation W28062425851 @default.
- W2806242585 hasRelatedWork W1554029525 @default.
- W2806242585 hasRelatedWork W1589419489 @default.
- W2806242585 hasRelatedWork W1783185948 @default.
- W2806242585 hasRelatedWork W1978794434 @default.
- W2806242585 hasRelatedWork W2013631688 @default.
- W2806242585 hasRelatedWork W2074183617 @default.
- W2806242585 hasRelatedWork W2401866201 @default.
- W2806242585 hasRelatedWork W2999505641 @default.
- W2806242585 hasRelatedWork W4229543669 @default.
- W2806242585 hasRelatedWork W615772105 @default.
- W2806242585 hasVolume "38" @default.
- W2806242585 isParatext "false" @default.
- W2806242585 isRetracted "false" @default.
- W2806242585 magId "2806242585" @default.
- W2806242585 workType "article" @default.