Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806262624> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2806262624 endingPage "264" @default.
- W2806262624 startingPage "263" @default.
- W2806262624 abstract "Abstract This thesis divides naturally into two parts, each concerned with the extent to which the theory of $L(mathbf {R})$ can be changed by forcing. The first part focuses primarily on applying generic-absoluteness principles to how that definable sets of reals enjoy regularity properties. The work in Part I is joint with Itay Neeman and is adapted from our paper Happy and mad families in $L(mathbf {R})$ , JSL, 2018. The project was motivated by questions about mad families , maximal families of infinite subsets of $omega $ of which any two have only finitely many members in common. We begin, in the spirit of Mathias, by establishing (Theorem 2.8) a strong Ramsey property for sets of reals in the Solovay model, giving a new proof of Törnquist’s theorem that there are no infinite mad families in the Solovay model. In Chapter 3 we stray from the main line of inquiry to briefly study a game-theoretic characterization of filters with the Baire Property. Neeman and Zapletal showed, assuming roughly the existence of a proper class of Woodin cardinals, that the boldface theory of $L(mathbf {R})$ cannot be changed by proper forcing. They call their result the Embedding Theorem, because they conclude that in fact there is an elementary embedding from the $L(mathbf {R})$ of the ground model to that of the proper forcing extension. With a view toward analyzing mad families under $mathsf {AD}^+$ and in $L(mathbf {R})$ under large-cardinal hypotheses, in Chapter 4 we establish triangular versions of the Embedding Theorem. These are enough for us to use Mathias’s methods to show (Theorem 4.5) that there are no infinite mad families in $L(mathbf {R})$ under large cardinals and (Theorem 4.9) that $mathsf {AD}^+$ implies that there are no infinite mad families. These are again corollaries of theorems about strong Ramsey properties under large-cardinal assumptions and $mathsf {AD}^+$ , respectively. Our first theorem improves the large-cardinal assumption under which Todorcevic established the nonexistence of infinite mad families in $L(mathbf {R})$ . Part I concludes with Chapter 5, a short list of open questions. In the second part of the thesis, we undertake a finer analysis of the Embedding Theorem and its consistency strength. Schindler found that the the Embedding Theorem is consistent relative to much weaker assumptions than the existence of Woodin cardinals. He defined remarkable cardinals , which can exist even in L , and showed that the Embedding Theorem is equiconsistent with the existence of a remarkable cardinal. His theorem resembles a theorem of Harrington–Shelah and Kunen from the 1980s: the absoluteness of the theory of $L(mathbf {R})$ to ccc forcing extensions is equiconsistent with a weakly compact cardinal. Joint with Itay Neeman, we improve Schindler’s theorem by showing that absoluteness for $sigma $ -closed $ast $ ccc posets—instead of the larger class of proper posets—implies the remarkability of $aleph _1^V$ in L . This requires a fundamental change in the proof, since Schindler’s lower-bound argument uses Jensen’s reshaping forcing, which, though proper, need not be $sigma $ -closed $ast $ ccc in that context. Our proof bears more resemblance to that of Harrington–Shelah than to Schindler’s. The proof of Theorem 6.2 splits naturally into two arguments. In Chapter 7 we extend the Harrington–Shelah method of coding reals into a specializing function to allow for trees with uncountable levels that may not belong to L . This culminates in Theorem 7.4, which asserts that if there are $Xsubseteq omega _1$ and a tree $Tsubseteq omega _1$ of height $omega _1$ such that X is codable along T (see Definition 7.3), then $L(mathbf {R})$ -absoluteness for ccc posets must fail. We complete the argument in Chapter 8, where we show that if in any $sigma $ -closed extension of V there is no $Xsubseteq omega _1$ codable along a tree T , then $aleph _1^V$ must be remarkable in L . In Chapter 9 we review Schindler’s proof of generic absoluteness from a remarkable cardinal to show that the argument gives a level-by-level upper bound: a strongly $lambda ^+$ -remarkable cardinal is enough to get $L(mathbf {R})$ -absoluteness for $lambda $ -linked proper posets. Chapter 10 is devoted to partially reversing the level-by-level upper bound of Chapter 9. Adapting the methods of Neeman, Hierarchies of forcing axioms II , we are able to show that $L(mathbf {R})$ -absoluteness for $left |mathbf {R}right |cdot left |lambda right |$ -linked posets implies that the interval $[aleph _1^V,lambda ]$ is $Sigma ^2_1$ -remarkable in L . Abstract prepared by Zach Norwood. E-mail : zachnorwood@gmail.com" @default.
- W2806262624 created "2018-06-13" @default.
- W2806262624 creator A5009130928 @default.
- W2806262624 date "2022-06-01" @default.
- W2806262624 modified "2023-09-27" @default.
- W2806262624 title "The Combinatorics and Absoluteness of Definable Sets of Real Numbers" @default.
- W2806262624 doi "https://doi.org/10.1017/bsl.2021.55" @default.
- W2806262624 hasPublicationYear "2022" @default.
- W2806262624 type Work @default.
- W2806262624 sameAs 2806262624 @default.
- W2806262624 citedByCount "0" @default.
- W2806262624 crossrefType "journal-article" @default.
- W2806262624 hasAuthorship W2806262624A5009130928 @default.
- W2806262624 hasBestOaLocation W28062626241 @default.
- W2806262624 hasConcept C112291201 @default.
- W2806262624 hasConcept C114614502 @default.
- W2806262624 hasConcept C118615104 @default.
- W2806262624 hasConcept C120665830 @default.
- W2806262624 hasConcept C121332964 @default.
- W2806262624 hasConcept C132525143 @default.
- W2806262624 hasConcept C134306372 @default.
- W2806262624 hasConcept C154945302 @default.
- W2806262624 hasConcept C197115733 @default.
- W2806262624 hasConcept C199360897 @default.
- W2806262624 hasConcept C2777212361 @default.
- W2806262624 hasConcept C2779557605 @default.
- W2806262624 hasConcept C2780102774 @default.
- W2806262624 hasConcept C2780841128 @default.
- W2806262624 hasConcept C2780990831 @default.
- W2806262624 hasConcept C33923547 @default.
- W2806262624 hasConcept C41008148 @default.
- W2806262624 hasConcept C41608201 @default.
- W2806262624 hasConcept C44115641 @default.
- W2806262624 hasConcept C62520636 @default.
- W2806262624 hasConceptScore W2806262624C112291201 @default.
- W2806262624 hasConceptScore W2806262624C114614502 @default.
- W2806262624 hasConceptScore W2806262624C118615104 @default.
- W2806262624 hasConceptScore W2806262624C120665830 @default.
- W2806262624 hasConceptScore W2806262624C121332964 @default.
- W2806262624 hasConceptScore W2806262624C132525143 @default.
- W2806262624 hasConceptScore W2806262624C134306372 @default.
- W2806262624 hasConceptScore W2806262624C154945302 @default.
- W2806262624 hasConceptScore W2806262624C197115733 @default.
- W2806262624 hasConceptScore W2806262624C199360897 @default.
- W2806262624 hasConceptScore W2806262624C2777212361 @default.
- W2806262624 hasConceptScore W2806262624C2779557605 @default.
- W2806262624 hasConceptScore W2806262624C2780102774 @default.
- W2806262624 hasConceptScore W2806262624C2780841128 @default.
- W2806262624 hasConceptScore W2806262624C2780990831 @default.
- W2806262624 hasConceptScore W2806262624C33923547 @default.
- W2806262624 hasConceptScore W2806262624C41008148 @default.
- W2806262624 hasConceptScore W2806262624C41608201 @default.
- W2806262624 hasConceptScore W2806262624C44115641 @default.
- W2806262624 hasConceptScore W2806262624C62520636 @default.
- W2806262624 hasIssue "2" @default.
- W2806262624 hasLocation W28062626241 @default.
- W2806262624 hasLocation W28062626242 @default.
- W2806262624 hasOpenAccess W2806262624 @default.
- W2806262624 hasPrimaryLocation W28062626241 @default.
- W2806262624 hasRelatedWork W153926374 @default.
- W2806262624 hasRelatedWork W1579874394 @default.
- W2806262624 hasRelatedWork W1986940200 @default.
- W2806262624 hasRelatedWork W2005510206 @default.
- W2806262624 hasRelatedWork W2092296749 @default.
- W2806262624 hasRelatedWork W2143075371 @default.
- W2806262624 hasRelatedWork W2160990703 @default.
- W2806262624 hasRelatedWork W2914945148 @default.
- W2806262624 hasRelatedWork W4213440678 @default.
- W2806262624 hasRelatedWork W4298041365 @default.
- W2806262624 hasVolume "28" @default.
- W2806262624 isParatext "false" @default.
- W2806262624 isRetracted "false" @default.
- W2806262624 magId "2806262624" @default.
- W2806262624 workType "article" @default.