Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806411441> ?p ?o ?g. }
- W2806411441 endingPage "2163" @default.
- W2806411441 startingPage "2154" @default.
- W2806411441 abstract "Measurements quality is important for process systems engineering. In this paper, an estimation scheme is proposed in the state-space form to monitor the degree of accuracy of measurements within a predefined horizon. Under the assumption that all the sensors are uncorrelated with each other, the distribution of measurement noise covariance as well as the distribution of state vector are estimated simultaneously. The key technique is to approximate the true posterior distribution by two independent proposal distributions using the variational Bayesian inference. It is shown that the proposed algorithm provides not only a complete picture of the working status of each sensor, but also satisfied estimates of the hidden states in the presence of faulty signals. Numerical examples with a moving target tracking model and a quadrate water tank experiment are conducted to demonstrate that the proposed method exhibits better performance than the existing methods, and even a small fluctuation of sensors can be accurately captured by the proposed algorithm." @default.
- W2806411441 created "2018-06-13" @default.
- W2806411441 creator A5023417619 @default.
- W2806411441 creator A5047724561 @default.
- W2806411441 creator A5071540194 @default.
- W2806411441 date "2019-03-01" @default.
- W2806411441 modified "2023-10-16" @default.
- W2806411441 title "Probabilistic Monitoring of Sensors in State-Space With Variational Bayesian Inference" @default.
- W2806411441 cites W1482540049 @default.
- W2806411441 cites W1628547760 @default.
- W2806411441 cites W1969198007 @default.
- W2806411441 cites W1984786788 @default.
- W2806411441 cites W1985865685 @default.
- W2806411441 cites W2010922160 @default.
- W2806411441 cites W2020592017 @default.
- W2806411441 cites W2026755043 @default.
- W2806411441 cites W2051913506 @default.
- W2806411441 cites W2061893297 @default.
- W2806411441 cites W2072664415 @default.
- W2806411441 cites W2091247827 @default.
- W2806411441 cites W2095376999 @default.
- W2806411441 cites W2102832680 @default.
- W2806411441 cites W2113508851 @default.
- W2806411441 cites W2118846378 @default.
- W2806411441 cites W2121251529 @default.
- W2806411441 cites W2122246449 @default.
- W2806411441 cites W2126525166 @default.
- W2806411441 cites W2126790865 @default.
- W2806411441 cites W2130166249 @default.
- W2806411441 cites W2132029223 @default.
- W2806411441 cites W2149237924 @default.
- W2806411441 cites W2152650864 @default.
- W2806411441 cites W2156064084 @default.
- W2806411441 cites W2171911691 @default.
- W2806411441 cites W2319186869 @default.
- W2806411441 cites W2338595933 @default.
- W2806411441 cites W2343246112 @default.
- W2806411441 cites W2510629360 @default.
- W2806411441 cites W2522467422 @default.
- W2806411441 cites W2549039965 @default.
- W2806411441 cites W2554580583 @default.
- W2806411441 cites W2559831896 @default.
- W2806411441 cites W2597057696 @default.
- W2806411441 cites W2607855551 @default.
- W2806411441 cites W2731849056 @default.
- W2806411441 cites W2745638820 @default.
- W2806411441 cites W2794413559 @default.
- W2806411441 cites W4247690662 @default.
- W2806411441 doi "https://doi.org/10.1109/tie.2018.2838088" @default.
- W2806411441 hasPublicationYear "2019" @default.
- W2806411441 type Work @default.
- W2806411441 sameAs 2806411441 @default.
- W2806411441 citedByCount "22" @default.
- W2806411441 countsByYear W28064114412019 @default.
- W2806411441 countsByYear W28064114412020 @default.
- W2806411441 countsByYear W28064114412021 @default.
- W2806411441 countsByYear W28064114412022 @default.
- W2806411441 countsByYear W28064114412023 @default.
- W2806411441 crossrefType "journal-article" @default.
- W2806411441 hasAuthorship W2806411441A5023417619 @default.
- W2806411441 hasAuthorship W2806411441A5047724561 @default.
- W2806411441 hasAuthorship W2806411441A5071540194 @default.
- W2806411441 hasConcept C105795698 @default.
- W2806411441 hasConcept C107673813 @default.
- W2806411441 hasConcept C11413529 @default.
- W2806411441 hasConcept C115961682 @default.
- W2806411441 hasConcept C121332964 @default.
- W2806411441 hasConcept C126255220 @default.
- W2806411441 hasConcept C154945302 @default.
- W2806411441 hasConcept C15744967 @default.
- W2806411441 hasConcept C160234255 @default.
- W2806411441 hasConcept C178650346 @default.
- W2806411441 hasConcept C19417346 @default.
- W2806411441 hasConcept C2775936607 @default.
- W2806411441 hasConcept C2776214188 @default.
- W2806411441 hasConcept C2777798563 @default.
- W2806411441 hasConcept C33923547 @default.
- W2806411441 hasConcept C41008148 @default.
- W2806411441 hasConcept C49937458 @default.
- W2806411441 hasConcept C57830394 @default.
- W2806411441 hasConcept C72434380 @default.
- W2806411441 hasConcept C74650414 @default.
- W2806411441 hasConcept C99498987 @default.
- W2806411441 hasConceptScore W2806411441C105795698 @default.
- W2806411441 hasConceptScore W2806411441C107673813 @default.
- W2806411441 hasConceptScore W2806411441C11413529 @default.
- W2806411441 hasConceptScore W2806411441C115961682 @default.
- W2806411441 hasConceptScore W2806411441C121332964 @default.
- W2806411441 hasConceptScore W2806411441C126255220 @default.
- W2806411441 hasConceptScore W2806411441C154945302 @default.
- W2806411441 hasConceptScore W2806411441C15744967 @default.
- W2806411441 hasConceptScore W2806411441C160234255 @default.
- W2806411441 hasConceptScore W2806411441C178650346 @default.
- W2806411441 hasConceptScore W2806411441C19417346 @default.
- W2806411441 hasConceptScore W2806411441C2775936607 @default.
- W2806411441 hasConceptScore W2806411441C2776214188 @default.
- W2806411441 hasConceptScore W2806411441C2777798563 @default.
- W2806411441 hasConceptScore W2806411441C33923547 @default.