Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806486989> ?p ?o ?g. }
- W2806486989 endingPage "1421" @default.
- W2806486989 startingPage "1415" @default.
- W2806486989 abstract "ConspectusMetal complexes have many proven applications in the caging and photochemical release of biologically active compounds. Photocaging groups derived from Ru(II) traditionally have been composed of ancillary ligands that are planar and bi- or tridentate, such as 2,2′-bipyridine (bpy), 2,2′:6′,2″-terpyridine (tpy), and 1,10-phenanthroline (phen). Complexes bearing ancillary ligands with denticities higher than three represent a new class of Ru(II)-based photocaging groups that are grossly underdeveloped. Because high-denticity ancillary ligands provide the ability to increase the structural rigidity and control the stereochemistry, our groups initiated a research program to explore the applications of such ligands in Ru(II)-based photocaging. Ru(TPA), bearing the tetradentate ancillary ligand tris(2-pyridylmethyl)amine (TPA), has been successfully utilized to effectively cage nitriles and aromatic heterocycles. Nitriles and aromatic heterocycles caged by the Ru(TPA) group show excellent stability in aqueous solutions in the dark, and the complexes can selectively release the caged molecules upon irradiation with light. Ru(TPA) is applicable as a photochemical agent to offer precise spatiotemporal control over biological activity without undesired toxicity. In addition, Ru(II) polypyridyl complexes with desired photochemical properties can be synthesized and identified by solid-phase synthesis, and the resulting complexes show properties to similar to those of complexes obtained by solution-phase synthesis. Density functional theory (DFT) calculations reveal that orbital mixing between the π* orbitals of the ancillary ligand and the Ru–N dσ* orbital is essential for ligand photodissociation in these complexes. Furthermore, the introduction of steric bulk enhances the photoliability of the caged molecules, validating that steric effects can largely influence the quantum efficiency of photoinduced ligand exchange in Ru(II) polypyridyl complexes. Recently, two new photocaging groups, Ru(cyTPA) and Ru(1-isocyTPQA), have been designed and synthesized for caging of nitriles and aromatic heterocycles, and these complexes exhibit unique photochemical properties distinct from those derived from Ru(TPA). Notably, the unusually greater quantum efficiency for the ligand exchange in [Ru(1-isocyTPQA)(MeCN)2](PF6)2, Φ400 = 0.033(3), uncovers a trans-type effect in the triplet metal-to-ligand charge transfer (3MLCT) state that enhances photoinduced ligand exchange in a new manner. DFT calculations and ultrafast transient spectroscopy reveal that the lowest-energy triplet state in [Ru(1-isocyTPQA)(MeCN)2](PF6)2 is a highly mixed 3MLCT/3ππ* excited state rather than a triplet metal-centered ligand-field (3LF) excited state; the latter is generally accepted for ligand photodissociation. In addition, Mulliken spin density calculations indicate that a majority of the spin density in [Ru(1-isocyTPQA)(MeCN)2](PF6)2 is localized on the isoquinoline arm, which is opposite to the cis MeCN, rather than on the ruthenium center. This significantly weakens the Ru–N6 (cis MeCN) bond, which then promotes the ligand photodissociation. This newly discovered effect gives a clearer perception of the interplay between the 3MLCT and 3LF excited states of Ru(II) polypyridyl complexes, which may be useful in the design and applications of ruthenium complexes in the areas of photoactivated drug delivery and photosensitizers." @default.
- W2806486989 created "2018-06-13" @default.
- W2806486989 creator A5026475770 @default.
- W2806486989 creator A5027533729 @default.
- W2806486989 creator A5038676358 @default.
- W2806486989 date "2018-06-05" @default.
- W2806486989 modified "2023-10-17" @default.
- W2806486989 title "Ru(II) Polypyridyl Complexes Derived from Tetradentate Ancillary Ligands for Effective Photocaging" @default.
- W2806486989 cites W1061725809 @default.
- W2806486989 cites W1542020233 @default.
- W2806486989 cites W1854857428 @default.
- W2806486989 cites W1969474499 @default.
- W2806486989 cites W1974583466 @default.
- W2806486989 cites W1982907012 @default.
- W2806486989 cites W1985691574 @default.
- W2806486989 cites W1993569566 @default.
- W2806486989 cites W2004554219 @default.
- W2806486989 cites W2005226930 @default.
- W2806486989 cites W2006588668 @default.
- W2806486989 cites W2011805858 @default.
- W2806486989 cites W2025395772 @default.
- W2806486989 cites W2039914623 @default.
- W2806486989 cites W2050082718 @default.
- W2806486989 cites W2060415328 @default.
- W2806486989 cites W2060930566 @default.
- W2806486989 cites W2068360263 @default.
- W2806486989 cites W2075544424 @default.
- W2806486989 cites W2080173500 @default.
- W2806486989 cites W2084298135 @default.
- W2806486989 cites W2089627958 @default.
- W2806486989 cites W2092435369 @default.
- W2806486989 cites W2095371774 @default.
- W2806486989 cites W2112927475 @default.
- W2806486989 cites W2115735829 @default.
- W2806486989 cites W2122141445 @default.
- W2806486989 cites W2125160663 @default.
- W2806486989 cites W2132925947 @default.
- W2806486989 cites W2136698583 @default.
- W2806486989 cites W2144131403 @default.
- W2806486989 cites W2149626441 @default.
- W2806486989 cites W2153201692 @default.
- W2806486989 cites W2158126418 @default.
- W2806486989 cites W2163915517 @default.
- W2806486989 cites W2166743958 @default.
- W2806486989 cites W2169620071 @default.
- W2806486989 cites W2220381772 @default.
- W2806486989 cites W2283547661 @default.
- W2806486989 cites W2314123861 @default.
- W2806486989 cites W2315035951 @default.
- W2806486989 cites W2319816922 @default.
- W2806486989 cites W2329270181 @default.
- W2806486989 cites W2346506430 @default.
- W2806486989 cites W2412235604 @default.
- W2806486989 cites W2421408924 @default.
- W2806486989 cites W2461645334 @default.
- W2806486989 cites W2511874499 @default.
- W2806486989 cites W2528306529 @default.
- W2806486989 cites W2573514428 @default.
- W2806486989 cites W2593088316 @default.
- W2806486989 cites W2622837617 @default.
- W2806486989 cites W2732707479 @default.
- W2806486989 cites W2772563483 @default.
- W2806486989 cites W2782278321 @default.
- W2806486989 cites W4245953163 @default.
- W2806486989 doi "https://doi.org/10.1021/acs.accounts.8b00066" @default.
- W2806486989 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6019290" @default.
- W2806486989 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29870227" @default.
- W2806486989 hasPublicationYear "2018" @default.
- W2806486989 type Work @default.
- W2806486989 sameAs 2806486989 @default.
- W2806486989 citedByCount "61" @default.
- W2806486989 countsByYear W28064869892019 @default.
- W2806486989 countsByYear W28064869892020 @default.
- W2806486989 countsByYear W28064869892021 @default.
- W2806486989 countsByYear W28064869892022 @default.
- W2806486989 countsByYear W28064869892023 @default.
- W2806486989 crossrefType "journal-article" @default.
- W2806486989 hasAuthorship W2806486989A5026475770 @default.
- W2806486989 hasAuthorship W2806486989A5027533729 @default.
- W2806486989 hasAuthorship W2806486989A5038676358 @default.
- W2806486989 hasBestOaLocation W28064869892 @default.
- W2806486989 hasConcept C115624301 @default.
- W2806486989 hasConcept C116569031 @default.
- W2806486989 hasConcept C131779359 @default.
- W2806486989 hasConcept C170493617 @default.
- W2806486989 hasConcept C178516000 @default.
- W2806486989 hasConcept C178790620 @default.
- W2806486989 hasConcept C185592680 @default.
- W2806486989 hasConcept C201194858 @default.
- W2806486989 hasConcept C21951064 @default.
- W2806486989 hasConcept C2779336533 @default.
- W2806486989 hasConcept C2781350956 @default.
- W2806486989 hasConcept C32909587 @default.
- W2806486989 hasConcept C544153396 @default.
- W2806486989 hasConcept C55493867 @default.
- W2806486989 hasConcept C71240020 @default.
- W2806486989 hasConcept C75473681 @default.
- W2806486989 hasConcept C8010536 @default.