Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806629281> ?p ?o ?g. }
- W2806629281 abstract "The mass, or binding energy, is the basis property of the atomic nucleus. It determines its stability, and reaction and decay rates. Quantifying the nuclear binding is important for understanding the origin of elements in the universe. The astrophysical processes responsible for the nucleosynthesis in stars often take place far from the valley of stability, where experimental masses are not known. In such cases, missing nuclear information must be provided by theoretical predictions using extreme extrapolations. Bayesian machine learning techniques can be applied to improve predictions by taking full advantage of the information contained in the deviations between experimental and calculated masses. We consider 10 global models based on nuclear Density Functional Theory as well as two more phenomenological mass models. The emulators of S2n residuals and credibility intervals defining theoretical error bars are constructed using Bayesian Gaussian processes and Bayesian neural networks. We consider a large training dataset pertaining to nuclei whose masses were measured before 2003. For the testing datasets, we considered those exotic nuclei whose masses have been determined after 2003. We then carried out extrapolations towards the 2n dripline. While both Gaussian processes and Bayesian neural networks reduce the rms deviation from experiment significantly, GP offers a better and much more stable performance. The increase in the predictive power is quite astonishing: the resulting rms deviations from experiment on the testing dataset are similar to those of more phenomenological models. The empirical coverage probability curves we obtain match very well the reference values which is highly desirable to ensure honesty of uncertainty quantification, and the estimated credibility intervals on predictions make it possible to evaluate predictive power of individual models." @default.
- W2806629281 created "2018-06-13" @default.
- W2806629281 creator A5014777601 @default.
- W2806629281 creator A5029111186 @default.
- W2806629281 creator A5033321277 @default.
- W2806629281 creator A5082272979 @default.
- W2806629281 date "2018-09-24" @default.
- W2806629281 modified "2023-10-17" @default.
- W2806629281 title "Bayesian approach to model-based extrapolation of nuclear observables" @default.
- W2806629281 cites W1567512734 @default.
- W2806629281 cites W1603903339 @default.
- W2806629281 cites W1614590832 @default.
- W2806629281 cites W1941114438 @default.
- W2806629281 cites W1946796168 @default.
- W2806629281 cites W1964809169 @default.
- W2806629281 cites W1973333099 @default.
- W2806629281 cites W1973594349 @default.
- W2806629281 cites W1974442873 @default.
- W2806629281 cites W1979029264 @default.
- W2806629281 cites W1984272508 @default.
- W2806629281 cites W1988716226 @default.
- W2806629281 cites W1992671281 @default.
- W2806629281 cites W1999634095 @default.
- W2806629281 cites W2002917384 @default.
- W2806629281 cites W2005724945 @default.
- W2806629281 cites W2009895260 @default.
- W2806629281 cites W2016108676 @default.
- W2806629281 cites W2017445558 @default.
- W2806629281 cites W2025720061 @default.
- W2806629281 cites W2028736041 @default.
- W2806629281 cites W2036798805 @default.
- W2806629281 cites W2038280548 @default.
- W2806629281 cites W2040178899 @default.
- W2806629281 cites W2046273913 @default.
- W2806629281 cites W2057058473 @default.
- W2806629281 cites W2058179844 @default.
- W2806629281 cites W2065179599 @default.
- W2806629281 cites W2070666537 @default.
- W2806629281 cites W2073504673 @default.
- W2806629281 cites W2077860263 @default.
- W2806629281 cites W2080170223 @default.
- W2806629281 cites W2085954365 @default.
- W2806629281 cites W2086203644 @default.
- W2806629281 cites W2090088421 @default.
- W2806629281 cites W2093529617 @default.
- W2806629281 cites W2106606323 @default.
- W2806629281 cites W2110497927 @default.
- W2806629281 cites W2111746204 @default.
- W2806629281 cites W2122203937 @default.
- W2806629281 cites W2129531883 @default.
- W2806629281 cites W2130416410 @default.
- W2806629281 cites W2130715829 @default.
- W2806629281 cites W2133286864 @default.
- W2806629281 cites W2148936717 @default.
- W2806629281 cites W2206683354 @default.
- W2806629281 cites W2241303134 @default.
- W2806629281 cites W2244684221 @default.
- W2806629281 cites W2302596551 @default.
- W2806629281 cites W2323397983 @default.
- W2806629281 cites W2330585403 @default.
- W2806629281 cites W2345759971 @default.
- W2806629281 cites W2548934199 @default.
- W2806629281 cites W2593847868 @default.
- W2806629281 cites W2600727226 @default.
- W2806629281 cites W2609825742 @default.
- W2806629281 cites W2755625714 @default.
- W2806629281 cites W2758062726 @default.
- W2806629281 cites W2783931264 @default.
- W2806629281 cites W2789209401 @default.
- W2806629281 cites W2915181819 @default.
- W2806629281 cites W3099452017 @default.
- W2806629281 cites W3100052272 @default.
- W2806629281 cites W3103576900 @default.
- W2806629281 cites W4206094900 @default.
- W2806629281 cites W84220242 @default.
- W2806629281 doi "https://doi.org/10.1103/physrevc.98.034318" @default.
- W2806629281 hasPublicationYear "2018" @default.
- W2806629281 type Work @default.
- W2806629281 sameAs 2806629281 @default.
- W2806629281 citedByCount "121" @default.
- W2806629281 countsByYear W28066292812018 @default.
- W2806629281 countsByYear W28066292812019 @default.
- W2806629281 countsByYear W28066292812020 @default.
- W2806629281 countsByYear W28066292812021 @default.
- W2806629281 countsByYear W28066292812022 @default.
- W2806629281 countsByYear W28066292812023 @default.
- W2806629281 crossrefType "journal-article" @default.
- W2806629281 hasAuthorship W2806629281A5014777601 @default.
- W2806629281 hasAuthorship W2806629281A5029111186 @default.
- W2806629281 hasAuthorship W2806629281A5033321277 @default.
- W2806629281 hasAuthorship W2806629281A5082272979 @default.
- W2806629281 hasBestOaLocation W28066292811 @default.
- W2806629281 hasConcept C105795698 @default.
- W2806629281 hasConcept C107673813 @default.
- W2806629281 hasConcept C112972136 @default.
- W2806629281 hasConcept C119857082 @default.
- W2806629281 hasConcept C121332964 @default.
- W2806629281 hasConcept C121864883 @default.
- W2806629281 hasConcept C132459708 @default.
- W2806629281 hasConcept C154945302 @default.