Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806658743> ?p ?o ?g. }
- W2806658743 endingPage "4577" @default.
- W2806658743 startingPage "4563" @default.
- W2806658743 abstract "Machine learning (ML) techniques have been utilized for the crop monitoring and yield estimation/prediction using remotely sensed data. However, these methods have been investigated less for yield prediction of some crops, such as silage maize, which can be cultivated at various times in different fields of an area. Inconsistency between fields for satellite-derived normalized difference vegetation index (NDVI) temporal profiles can lead to some difficulties in yield prediction methods using time series of remotely sensed data. Therefore, this research has investigated silage maize yield prediction based on time series of NDVI dataset derived from Landsat 8 OLI. This paper employed advanced ML techniques including boosted regression tree (BRT), random forest regression (RFR), support vector regression, and Gaussian process regression (GPR) approaches and compared their performance with some proposed conventional regression methods. For this purpose, the NDVI values of all silage maize fields were averaged and integrated to produce a two-dimensional dataset for each year. The ML techniques were employed 100 times and their evaluation metrics were used to evaluate their performances and also analyze their stability. Finally, all the results of each ML technique were averaged to produce silage maize yields. The comparisons between the results of these methods indicate that the BRT technique, with the average $R$ value higher than 0.87, outperforms other ones for all years. It was followed by RFR with almost same performance as GPR technique. This research demonstrated that some advanced ML approaches can predict the silage maize yield and they are less sensitive to inconsistency of NDVI time series. The results also showed that RFR was the most stable method to predict the maize yield in 2015, while it was trained using 2013–2014 dataset." @default.
- W2806658743 created "2018-06-13" @default.
- W2806658743 creator A5014551375 @default.
- W2806658743 creator A5035611806 @default.
- W2806658743 creator A5049515454 @default.
- W2806658743 creator A5061978391 @default.
- W2806658743 creator A5062913577 @default.
- W2806658743 date "2018-12-01" @default.
- W2806658743 modified "2023-10-18" @default.
- W2806658743 title "Machine Learning Regression Techniques for the Silage Maize Yield Prediction Using Time-Series Images of Landsat 8 OLI" @default.
- W2806658743 cites W1657213141 @default.
- W2806658743 cites W1964357740 @default.
- W2806658743 cites W1966035399 @default.
- W2806658743 cites W1968496754 @default.
- W2806658743 cites W1971883950 @default.
- W2806658743 cites W1981045745 @default.
- W2806658743 cites W1986072339 @default.
- W2806658743 cites W1987415163 @default.
- W2806658743 cites W1987607942 @default.
- W2806658743 cites W1990729297 @default.
- W2806658743 cites W1994975670 @default.
- W2806658743 cites W1998763246 @default.
- W2806658743 cites W2000285770 @default.
- W2806658743 cites W2002477309 @default.
- W2806658743 cites W2004668576 @default.
- W2806658743 cites W2007342648 @default.
- W2806658743 cites W2018565194 @default.
- W2806658743 cites W2024046085 @default.
- W2806658743 cites W2025745000 @default.
- W2806658743 cites W2026021064 @default.
- W2806658743 cites W2026334613 @default.
- W2806658743 cites W2028240797 @default.
- W2806658743 cites W2035110811 @default.
- W2806658743 cites W2036384654 @default.
- W2806658743 cites W2036706101 @default.
- W2806658743 cites W2038136715 @default.
- W2806658743 cites W2039240409 @default.
- W2806658743 cites W2043791654 @default.
- W2806658743 cites W2047450756 @default.
- W2806658743 cites W2051085080 @default.
- W2806658743 cites W2058213690 @default.
- W2806658743 cites W2060426168 @default.
- W2806658743 cites W2063907334 @default.
- W2806658743 cites W2065800647 @default.
- W2806658743 cites W2067039847 @default.
- W2806658743 cites W2069368102 @default.
- W2806658743 cites W2071110539 @default.
- W2806658743 cites W2073964496 @default.
- W2806658743 cites W2074464158 @default.
- W2806658743 cites W2093691623 @default.
- W2806658743 cites W2093902012 @default.
- W2806658743 cites W2094729210 @default.
- W2806658743 cites W2106316381 @default.
- W2806658743 cites W2110298216 @default.
- W2806658743 cites W2110909165 @default.
- W2806658743 cites W2112674101 @default.
- W2806658743 cites W2115076892 @default.
- W2806658743 cites W2115870554 @default.
- W2806658743 cites W2118182941 @default.
- W2806658743 cites W2118286367 @default.
- W2806658743 cites W2135695572 @default.
- W2806658743 cites W2136251662 @default.
- W2806658743 cites W2139211176 @default.
- W2806658743 cites W2139709933 @default.
- W2806658743 cites W2148876008 @default.
- W2806658743 cites W2150140969 @default.
- W2806658743 cites W2153635508 @default.
- W2806658743 cites W2161086066 @default.
- W2806658743 cites W2162421262 @default.
- W2806658743 cites W2168020168 @default.
- W2806658743 cites W2170851227 @default.
- W2806658743 cites W2181171301 @default.
- W2806658743 cites W2200121095 @default.
- W2806658743 cites W2314720829 @default.
- W2806658743 cites W2321989211 @default.
- W2806658743 cites W2334728028 @default.
- W2806658743 cites W2406192270 @default.
- W2806658743 cites W2483888092 @default.
- W2806658743 cites W2490548105 @default.
- W2806658743 cites W2499691472 @default.
- W2806658743 cites W2584423918 @default.
- W2806658743 cites W3021669467 @default.
- W2806658743 cites W3099646280 @default.
- W2806658743 cites W4241996101 @default.
- W2806658743 cites W4243562335 @default.
- W2806658743 cites W4246540172 @default.
- W2806658743 cites W4249940406 @default.
- W2806658743 cites W4250595332 @default.
- W2806658743 cites W4292283308 @default.
- W2806658743 cites W612661449 @default.
- W2806658743 doi "https://doi.org/10.1109/jstars.2018.2823361" @default.
- W2806658743 hasPublicationYear "2018" @default.
- W2806658743 type Work @default.
- W2806658743 sameAs 2806658743 @default.
- W2806658743 citedByCount "96" @default.
- W2806658743 countsByYear W28066587432019 @default.
- W2806658743 countsByYear W28066587432020 @default.
- W2806658743 countsByYear W28066587432021 @default.