Matches in SemOpenAlex for { <https://semopenalex.org/work/W2806771853> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2806771853 abstract "In this paper, we propose a regression system to infer the emotion intensity of a tweet. We develop a multi-aspect feature learning mechanism to capture the most discriminative semantic features of a tweet as well as the emotion information conveyed by each word in it. We combine six types of feature groups: (1) a tweet representation learned by an LSTM deep neural network on the training data, (2) a tweet representation learned by an LSTM network on a large corpus of tweets that contain emotion words (a distant supervision corpus), (3) word embeddings trained on the distant supervision corpus and averaged over all words in a tweet, (4) word and character n-grams, (5) features derived from various sentiment and emotion lexicons, and (6) other hand-crafted features. As part of the word embedding training, we also learn the distributed representations of multi-word expressions (MWEs) and negated forms of words. An SVR regressor is then trained over the full set of features. We evaluate the effectiveness of our ensemble feature sets on the SemEval-2018 Task 1 datasets and achieve a Pearson correlation of 72% on the task of tweet emotion intensity prediction." @default.
- W2806771853 created "2018-06-13" @default.
- W2806771853 creator A5001844508 @default.
- W2806771853 creator A5033684482 @default.
- W2806771853 creator A5042893723 @default.
- W2806771853 creator A5065059896 @default.
- W2806771853 creator A5077738658 @default.
- W2806771853 date "2018-01-01" @default.
- W2806771853 modified "2023-09-25" @default.
- W2806771853 title "DeepMiner at SemEval-2018 Task 1: Emotion Intensity Recognition Using Deep Representation Learning" @default.
- W2806771853 cites W1987425720 @default.
- W2806771853 cites W2022204871 @default.
- W2806771853 cites W2040467972 @default.
- W2806771853 cites W2095705004 @default.
- W2806771853 cites W2111975591 @default.
- W2806771853 cites W2153579005 @default.
- W2806771853 cites W2156413587 @default.
- W2806771853 cites W2158899491 @default.
- W2806771853 cites W2160660844 @default.
- W2806771853 cites W2166706824 @default.
- W2806771853 cites W2250374929 @default.
- W2806771853 cites W2251939518 @default.
- W2806771853 cites W2252024663 @default.
- W2806771853 cites W2490634156 @default.
- W2806771853 cites W2557816620 @default.
- W2806771853 cites W2567406479 @default.
- W2806771853 cites W2788918109 @default.
- W2806771853 cites W2805744755 @default.
- W2806771853 cites W2806227953 @default.
- W2806771853 cites W2949709688 @default.
- W2806771853 cites W2950577311 @default.
- W2806771853 cites W2963177779 @default.
- W2806771853 cites W2964121744 @default.
- W2806771853 doi "https://doi.org/10.18653/v1/s18-1045" @default.
- W2806771853 hasPublicationYear "2018" @default.
- W2806771853 type Work @default.
- W2806771853 sameAs 2806771853 @default.
- W2806771853 citedByCount "4" @default.
- W2806771853 countsByYear W28067718532018 @default.
- W2806771853 countsByYear W28067718532020 @default.
- W2806771853 countsByYear W28067718532021 @default.
- W2806771853 crossrefType "proceedings-article" @default.
- W2806771853 hasAuthorship W2806771853A5001844508 @default.
- W2806771853 hasAuthorship W2806771853A5033684482 @default.
- W2806771853 hasAuthorship W2806771853A5042893723 @default.
- W2806771853 hasAuthorship W2806771853A5065059896 @default.
- W2806771853 hasAuthorship W2806771853A5077738658 @default.
- W2806771853 hasBestOaLocation W28067718531 @default.
- W2806771853 hasConcept C108583219 @default.
- W2806771853 hasConcept C127413603 @default.
- W2806771853 hasConcept C154945302 @default.
- W2806771853 hasConcept C17744445 @default.
- W2806771853 hasConcept C199539241 @default.
- W2806771853 hasConcept C201995342 @default.
- W2806771853 hasConcept C204321447 @default.
- W2806771853 hasConcept C2776359362 @default.
- W2806771853 hasConcept C2780451532 @default.
- W2806771853 hasConcept C28490314 @default.
- W2806771853 hasConcept C41008148 @default.
- W2806771853 hasConcept C44572571 @default.
- W2806771853 hasConcept C94625758 @default.
- W2806771853 hasConceptScore W2806771853C108583219 @default.
- W2806771853 hasConceptScore W2806771853C127413603 @default.
- W2806771853 hasConceptScore W2806771853C154945302 @default.
- W2806771853 hasConceptScore W2806771853C17744445 @default.
- W2806771853 hasConceptScore W2806771853C199539241 @default.
- W2806771853 hasConceptScore W2806771853C201995342 @default.
- W2806771853 hasConceptScore W2806771853C204321447 @default.
- W2806771853 hasConceptScore W2806771853C2776359362 @default.
- W2806771853 hasConceptScore W2806771853C2780451532 @default.
- W2806771853 hasConceptScore W2806771853C28490314 @default.
- W2806771853 hasConceptScore W2806771853C41008148 @default.
- W2806771853 hasConceptScore W2806771853C44572571 @default.
- W2806771853 hasConceptScore W2806771853C94625758 @default.
- W2806771853 hasLocation W28067718531 @default.
- W2806771853 hasOpenAccess W2806771853 @default.
- W2806771853 hasPrimaryLocation W28067718531 @default.
- W2806771853 hasRelatedWork W2081647779 @default.
- W2806771853 hasRelatedWork W2152358231 @default.
- W2806771853 hasRelatedWork W21906215 @default.
- W2806771853 hasRelatedWork W2251529656 @default.
- W2806771853 hasRelatedWork W3107474891 @default.
- W2806771853 hasRelatedWork W3170502317 @default.
- W2806771853 hasRelatedWork W4287160675 @default.
- W2806771853 hasRelatedWork W4287854433 @default.
- W2806771853 hasRelatedWork W4287887887 @default.
- W2806771853 hasRelatedWork W70010159 @default.
- W2806771853 isParatext "false" @default.
- W2806771853 isRetracted "false" @default.
- W2806771853 magId "2806771853" @default.
- W2806771853 workType "article" @default.